Answer:
A. K = 59.5
Explanation:
Hello there!
In this case, since this reaction seems to start moving leftwards due to the fact that neither A nor Y are present at equilibrium, we should rewrite the equation:
3C (g) + D (g) <-- --> 2A (g) + Y (g)
Thus, the equilibrium expression is:
![K^{left}=\frac{[A]^2[Y]}{[C]^3[D]}](https://tex.z-dn.net/?f=K%5E%7Bleft%7D%3D%5Cfrac%7B%5BA%5D%5E2%5BY%5D%7D%7B%5BC%5D%5E3%5BD%5D%7D)
Next, according to an ICE table for this reaction, we find that:
![[A]=2x](https://tex.z-dn.net/?f=%5BA%5D%3D2x)
![[Y]=x](https://tex.z-dn.net/?f=%5BY%5D%3Dx)
![[C]=0.651M-3x](https://tex.z-dn.net/?f=%5BC%5D%3D0.651M-3x)
![[D]=0.754M-x](https://tex.z-dn.net/?f=%5BD%5D%3D0.754M-x)
Whereas x is calculated by knowing that the [C] at equilibrium is 0.456M; thus:

Next, we compute the rest of the concentrations:
![[A]=2(0.065M)=0.13M](https://tex.z-dn.net/?f=%5BA%5D%3D2%280.065M%29%3D0.13M)
![[Y]=0.065M](https://tex.z-dn.net/?f=%5BY%5D%3D0.065M)
![[D]=0.754M-0.065M=0.689M](https://tex.z-dn.net/?f=%5BD%5D%3D0.754M-0.065M%3D0.689M)
Thus, the equilibrium constant for the leftwards reaction is:

Nonetheless, we need the equilibrium reaction for the rightwards reaction; thus, we take the inverse to get:

Therefore, the answer would be A. K = 59.5.
Regards!
The answer is A: neutrons help make an atom more stable.
Neutrons do not have a charge, and they weigh about the same as a proton. Neutrons make an atom more stable because they hold the protons together. Without neutrons, the protons would separate from each other.
The answer is A: neutrons help make an atom more stable.
Answer:
110.984 ?
i apologize if i'm wrong, you can report it if im wrong
have a good day/ night
Explanation:
Answer: B
Explanation: the answer is B