We are given
0.2 M HCHO2 which is formic acid, a weak acid
and
0.15 M NaCHO2 which is a salt which can be formed by reacting HCHO2 and NaOH
The mixture of the two results to a basic buffer solution
To get the pH of a base buffer, we use the formula
pH = 14 - pOH = 14 - (pKa - log [salt]/[base])
We need the pKa of HCO2
From, literature, pKa = 1.77 x 10^-4
Substituting into the equation
pH = 14 - (1.77 x 10^-4 - log 0.15/0.2)
pH = 13.87
So, the pH of the buffer solution is 13.87
A pH of greater than 7 indicates that the solution is basic and a pH close to 14 indicates high alkalinity. This is due to the buffering effect of the salt on the base.
Nonmetals form negatively charged ions, or anions. They do this because they need to gain one to three electrons in order to achieve an octet of valence electrons, making them isoelectronic with the noble gas at the end of the period to which they belong.
Answer:
Gas state
Explanation:
Gas particles spread out to fill a container evenly, unlike solids and liquids.
Answer:
a. E-H-Y
Explanation:
A group of three nucleotides is called a codon that codes for a specific amino acid in the protein. There are 20 essential amino acids present in human body and are required in the diet.
Each amino acid is given a one-letter code that makes the study of amino acid sequences easy. One letter code for the given amino acid sequence Glutamic Acid-Histidine-Tyrosine is E-H-Y in which E is code for Glutamic Acid, H is a code for Histidine, and Y is a code for Tyrosine.
Hence, the correct answer is "a. E-H-Y".
The answer is na3po4+3koh=3naoh+k3po4