Answer:
The equilibrium concentration of NO is 0.001335 M
Explanation:
Step 1: Data given
The equilibrium constant Kc is 0.0025 at 2127 °C
An equilibrium mixture contains 0.023M N2 and 0.031 M O2,
Step 2: The balanced equation
N2(g) + O2(g) ↔ 2NO(g)
Step 3: Concentration at the equilibrium
[N2] = 0.023 M
[O2] = 0.031 M
Kc = 0.0025 = [NO]² / [N2][O2]
Kc = 0.0025 = [NO]² / (0.023)(0.031)
[NO] = 0.001335 M
The equilibrium concentration of NO is 0.001335 M
Molting
~~~hope this helps~~~
~~~davatar~~~
Answer:
Oxidation, Reduction
Explanation:
A redox reaction is a short form for reduction-oxidation.
Reduction is a term which means that electron is gained while oxidation is a term which means that electron Is lost.
The species that gain electron is known as the oxidizing agent while the species losing electrons is known as the reducing agent
A. NaCl(s) and O2(g)
B. 2NaClO3(s) —> 2NaCl(s) + 3O2(g)
C. moles NaClO3 = 100 g / 106.44 g/mol = 0.939 mol NaClO3
D. 0.939 mol NaCl (because the NaClO3 and NaCl are in a 1 to 1 ratio)
E. grams NaCl = 0.939 mol • 58.44 g/mol = 54.9 g NaCl
F. moles of O2 = 0.939 mol NaClO3 • (3 mol O2 / 2 mol NaClO3) = 1.41 mol O2
G. grams of O2 = 1.41 mol • 32 g/mol = 45.1 g O2
H. Percent yield = 10/45.1 • 100% = 22.2% yield