Answer: 3
Explanation:
An oxide-reduction reaction or, simply, redox reaction, is a <u>chemical reaction in which one or more electrons are transferred between the reactants</u>, causing a change in their oxidation states, which is the hypothetical electric charge that the atom would have if all its links with different elements were 100% ionic.
For there to be a reduction-oxidation reaction, in the system there must be an element that yields electrons and another that accepts them:
-
The oxidizing agent picks up electrons and remains with a state of oxidation inferior to that which it had, that is, it is reduced.
- The reducing agent supplies electrons from its chemical structure to the medium, increasing its oxidation state, ie, being oxidized.
To balance a redox equation you must <u>identify the elements that are oxidized and reduced and the amount of electrons that they release or capture, respectively.
</u>
In the reaction that arises in the question the silver (Ag) is reduced <u>because it decreases its oxidation state from +1 to 0</u> and the aluminum (Al) is oxidized because <u>its oxidation state increases from 0 to +3</u>, releasing 3 electrons (e⁻). Then we can raise two half-reactions:
Ag⁺ + e⁻ → Ag⁰
Al⁰ → Al⁺³ + 3e⁻
In order to obtain the balanced equation, we must multiply the first half-reaction by 3 so that, when both half-reactions are added, the electrons are canceled. In this way:
(Ag⁺ + e⁻ → Ag⁰ ) x3
Al⁰ → Al⁺³ + 3e⁻ +
-------------------------------------
3Ag⁺ + Al⁰ → 3Ag⁰ + Al⁺³
So, the coefficient of silver in the final balanced equation is 3.
<span>this is a limiting reagent problem.
first, balance the equation
4Na+ O2 ---> 2Na2O
use both the mass of Na and mass of O2 to figure out how much possible Na2O you could make.
start with Na and go to grams of Na2O
55.3 gNa x (1molNa/23.0gNa) x (2 molNa2O/4 molNa) x (62.0gNa2O/1molNa2O) = 75.5 gNa2O
do the same with O2
64.3 gO2 x (1 molO2/32.0gO2) x (2 molNa2O/1 mol O2) x (62.0gNa2O/1molNa2O) = 249.2 g Na2O
now you must pick the least amount of Na2O for the one that you actually get in the reaction. This is because you have to have both reacts still present for a reaction to occur. So after the Na runs out when it makes 75.5 gNa2O with O2, the reaction stops.
So, the mass of sodium oxide is
75.5 g</span>
Answer:
pure hydrogen is a pure substance even though it consists of many different types of molecules. what makes it pure substance is that it is free from contamination.
What are the options? I can try to give you an answer if options are provided.
The orbital hybridization of the central carbon atom in CSe2 is sp.
In chemical bonding, atomic orbitals may be combined to form appropriate hybrid orbitals suitable for bonding. The orbitals that combine during hybridization must be close enough in energy.
In the compound Cse2, carbon is the central atom bonded to two selenium atoms. The carbon atom in CSe2 is sp hybridized.
Learn more about orbital hybridization: brainly.com/question/1869903