What are you looking for? bc i can’t see what you are asking
Answer:
303.4 millimeters
Explanation:
Just multiply 1.64 by 0.185. then convert that answer to millimeters
Answer:
a. BH₃
Explanation:
According to the octet rules, atoms reach stability when are surrounded by eight electrons in their valence shell when they combine to form a chemical compound.
From the options, the only compound in which the central atom does not meet the octet rules is BH₃. The central atom is boron (B), which has 3 electrons in its valence shell. When B is combined with hydrogen (H), 3 electrons from the 3 atoms of H are added. The total amount of electrons is 6, fewer than 8 electrons needed to meet the rule.
hope this helps
Answer:
Explanation:
Depression in freezing point is given by:

= Depression in freezing point
i= vant hoff factor = 1 (for non electrolyte like urea)
= freezing point constant = 
m= molality

Weight of solvent (X)= 950 g = 0.95 kg
Molar mass of non electrolyte (urea) = 60.06 g/mol
Mass of non electrolyte (urea) added = ?


Thus
urea was dissolved.
Answer:
![Ka=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OH%5D%7D)
Explanation:
Hello,
In this case, weak acids are characterized by the fact they do not dissociate completely, it means they do not divide into the conjugated base and acid at all, a percent only, which is quantified via equilibrium. In such a way, the chemical equation representing such incomplete dissociation is said to be:

Thus, we can write the law of mass action, which consider the equilibrium concentrations of all the involved species, which is also known as the acid dissociation constant which accounts for the capacity the acid has to yield hydronium ions:
![K=Ka=\frac{[C_6H_5O^-][H^+]}{[C_6H_5OH]}](https://tex.z-dn.net/?f=K%3DKa%3D%5Cfrac%7B%5BC_6H_5O%5E-%5D%5BH%5E%2B%5D%7D%7B%5BC_6H_5OH%5D%7D)
Best regards.