13.5g
Explanation:
Given parameters:
Mass of Na = 10g
Mass of O₂ = 10g
Unknown:
Mass of products formed = ?
Balanced equation = ?
Solution:
The balanced chemical equation is shown below:
4Na + O₂ ⇒ 2Na₂O
In any reaction, the specie in short supply determines the extent of the reaction.
This reaction is not an exclusion. We need to first determine the specie in short supply and use it to estimate the amount of product since we have a 100% yield which signifies that all was used up.
let us convert to moles;
Number of moles of Na =
= 0.435mole
Number of moles of O₂ =
= 0.313mole
From the given equation;
4 moles of Na requires 1 mole of O₂;
0.435 moles of Na will require
= 0.11 moles
But the given amount O₂ is 0.313, this is an excess of 0.313 - 0.11 = 0.203moles
We see that Na is the limiting reagent;
4 moles of Na gives 2 mole of Na₂O
0.435 moles of Na will give
= 0.22 moles
Mass of Na₂O = number of moles x molar mass = 62 x 0.22 = 13.5g
learn more:
Number of moles brainly.com/question/1841136
#learnwithBrainly
You just need to convert it into moles per Liter (mol/L).
0.0815mol / 0.550L = 0.148mol/L
Answer:
0.01836 M
Explanation:
Again the reaction equation is;
Fe(s) + Mn2+(aq) → Fe2+(aq) + Mn(s)
E°cell= 0.77 V
Ecell= 0.78 V
[Mn2+] = 0.040 M
[Fe2+] = the unknown
n=2
From Nernst's equation;
Ecell= E°cell- 0.0592/n log Q
0.78= 0.77 - 0.0592/2 log [Fe2+] /[0.040]
0.78-0.77= - 0.0592/2 log [Fe2+] /[0.040]
0.01/ -0.0296= log [Fe2+] /[0.040]
-0.3378= log [Fe2+] /[0.040]
Antilog(-0.3378) = [Fe2+] /[0.040]
0.459= [Fe2+] /[0.040]
[Fe2+] = 0.459 × 0.040
[Fe2+] = 0.01836 M
Answer:
When our bodies are dry and wind blows by, we lose some energy to the air molecules. When are bodies are wet, we have a substance on our skin that likes to absorb heat. So when wind blows by, we lose a LOT of energy to the air molecules. When the body loses heat energy, our body temperature drops.
Explanation:
hope it helps
<u>plzz </u><u>mark</u><u> it</u><u> as</u><u> brainliest</u><u>.</u><u>.</u><u>.</u>