The empirical formula represents the simplest whole number shows the simplest whole number ratio of atoms in a compound. An example of this is the empirical formula for glucose (C₆H₁₂O₆) is C₃H₆O₃.
I hope this helps. Let me know if anything is unclear.
Answer: A & D
Explanation:
The two main forces are temperature and salinity.
Answer:
19.32
Explanation:
the density is given by the mass over volume
the mass In this case is 342.93 and the volume is 17.75
d=342.93g/17.75cm
=19.32g/cm
i hope this helps
Answer:
71.372 g or 0.7 moles
Explanation:
We are given;
- Moles of Aluminium is 1.40 mol
- Moles of Oxygen 1.35 mol
We are required to determine the theoretical yield of Aluminium oxide
The equation for the reaction between Aluminium and Oxygen is given by;
4Al(s) + 3O₂(g) → 2Al₂O₃(s)
From the equation 4 moles Al reacts with 3 moles of oxygen to yield 2 moles of Aluminium oxide.
Therefore;
1.4 moles of Al will require 1.05 moles (1.4 × 3/4) of oxygen
1.35 moles of Oxygen will require 1.8 moles (1.35 × 4/3) of Aluminium
Therefore, Aluminium is the rate limiting reagent in the reaction while Oxygen is the excess reactant.
4 moles of aluminium reacts to generate 2 moles aluminium oxide.
Therefore;
Mole ratio Al : Al₂O₃ is 4 : 2
Thus;
Moles of Al₂O₃ = Moles of Al × 0.5
= 1.4 moles × 0.5
= 0.7 moles
But; 1 mole of Al₂O₃ = 101.96 g/mol
Thus;
Theoretical mass of Al₂O₃ = 0.7 moles × 101.96 g/mol
= 71.372 g
Answer:
39
Explanation:
Electrons weigh almost nothing, so their mass doesn't really matter for these types of problems. Just subtract 118-79 to find the remaining mass which is for the neutrons.