Answer:
The four quantum number for each electron will be:








Explanation:
As the element is neutral, the number of protons will be equal to number of electrons which will be the atomic number of the element.
Number of electrons =12
Atomic number = 12
Element : Magnesium
The principal shell is represented by "n"
i) For "s" subshell the value of l =0 (azimuthal quantum number) thus m (magnetic quantum number)= 0
The two electrons in s subshell will have either plus half or minus half spin quantum number
ii) for "p" subshell the value for l =1
thus m = 0 or +1 or -1
The two electrons in each orbital will have either plus half or minus half spin quantum number
Answer:
The correct answer is
B.

Explanation:
Enthalpy of reaction :
It is the amount of energy released/absorbed when one mole of the substance is formed from the reactant at a constant pressure.
The enthalpy of a reaction can be calculated using :









Please note that :
The carbon monoxide , CO should be taken as C triple bond O. Not C=O .
So , the bond energy =1072 is used

Which diagram? There isn’t any there lol
<h3>
Answer:</h3>
251 mol Xe
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 1.51 × 10²⁶ atoms Xe
[Solve] moles Xe
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rule and round. We are given 3 sig figs.</em>
250.747 mol Xe ≈ 251 mol Xe