1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MArishka [77]
3 years ago
6

A player bounces a basketball on the floor, compressing it to 80.0 % of its original volume. The air (assume it is essentially N

2 gas) inside the ball is originally at a temperature of 20.0 ∘C and a pressure of 2.00 atm. The ball's diameter is 23.9 cm. By how much does the internal energy of the air change between the ball's original state and the maximum compression?
Physics
2 answers:
Damm [24]3 years ago
7 0

The change in internal energy after the ball is compressed is \fbox{289.7\,{\text{J}}}.

Further explanation:

Change in energy is done on the cost of its internal energy which is given by the first law of thermodynamics.

Given:

The new volume of the ball is 0.8 times the original volume.

The pressure inside the ball is 2atm.

The diameter of the ball is 23.9cm.

Concept used:

Law of Conservation of Energy state that “Energy can neither be created nor be destroyed but only it can be transferred from one to another form and also called first law of thermodynamics.

The first law of thermodynamics state that "the amount of change in internal energy \Delta U of one system is expressed as sum of heat Q  that transferring across its boundaries of the system and work done W on system by surroundings":

\Delta U = Q + W                                            …… (1)

The expression for the work done is given as.

W = P\Delta V

Here, \Delta V is the change in volume and P is the pressure.

In this system there is no heat transfer i.e. Q = 0.

Substitute P\Delta V for W and 0 for Q in equation (1).

\fbox{\begin\\\Delta U = P\Delta V\end{minispace}}

The final expression reduces as.

\Delta U = P\left( {{V_2} - {V_1}} \right)                          …… (2)

Here, {V_1} is the original volume, {V_2} is the compressed volume and\Delta U is the change in internal energy.

The expression for the volume of sphere is given as.

{V_1} = \dfrac{4}{3}\pi {r_1}^3                                    …… (3)

Here, {r_1} is the radius of ball.

Substitute\left( {\frac{{23.9}}{2}} \right){\text{cm}}for r_1  in equation (3).

\begin{aligned}{V_1}&=\frac{4}{3}\pi {\left( {\frac{{23.9\,{\text{cm}}}}{2}} \right)^3}\\&=\frac{4}{3}\pi {\left( {\frac{{23.9\,{\text{cm}}}}{2}\left( {\frac{{1\,{\text{m}}}}{{100\,{\text{cm}}}}} \right)} \right)^3} \\&=7.15\,{{\text{m}}^{\text{3}}}\\ \end{aligned}

 

Substitute 0.8{V_1} for {V_2} , 2\,{\text{atm}} for P and 7.15\,{{\text{m}}^{\text{3}}} for {V_1} in equation (2).

\begin{aligned}\Delta U&=\left( {2\,{\text{atm}}} \right)\left( {0.8{V_1} - {V_1}} \right) \\&=\left({2\,{\text{atm}}\left( {\frac{{{\text{101325}}\,{\text{Pa}}}}{{1\,{\text{atm}}}}} \right)} \right)\left( {0.2{V_1}} \right)\\&=\left( {202650} \right)\left( {0.2\left( {7.15\,{{\text{m}}^{\text{3}}}} \right)} \right)\\&=289.7\,{\text{J}} \\ \end{aligned}

 

Thus, the change in internal energy of the ball is \fbox{289.7\,{\text{J}}}.

Learn more:

1.  Example of energies brainly.com/question/1062501.

2. Motion under friction brainly.com/question/7031524.

3. Average translational kinetic energy brainly.com/question/9078768.

Answer Details:

Grade: College

Subject: Physics

Chapter: Heat and Thermodynamics

Keywords:

Energy, heat, work, first law of thermodynamics, conservation of energy, volume, mass, change in volume, heat transfer, compression, system, surrounding, 289.7J, 290J, 7.15m^3.

son4ous [18]3 years ago
3 0

Answer: 292.95 J

Explanation:

change in internal energy= Heat transfer - work done

ΔU =Q -PΔV

Here, Q = 0 as there is no heat transfer.

P =2.00 atm = 2.00 × 101235 Pa = 202470 Pa

ΔV = final volume - initial volume = 0.8 V -V = -0.2 V

where V is the initial volume.

Volume of a spherical ball, V = \frac{4}{3}\pi r^3

r = d/2 = 23.9 cm / 2 = 0.12 m

V = \frac{4}{3}\times 3.14 \times (0.12m)^3= 7.23\times10^{-3}m^3

\DeltaU = -P\DeltaV = - 202470 Pa \times -0.2 \times 7.23\times10^{-3}m^3=292.95 J

Hence, internal energy would change by 292.95 J.

You might be interested in
how do Swati and Banks adjust their body position during a skydiving jump so they can fall at the same rate
professor190 [17]

While skydiving, its not just freely falling under Earth's gravity. Additional force called drag acts against the gravity which slows down the rate of fall. Drag is caused by the air molecules which pushes against the body as it falls through them. This is actually a significant amount of force which slows down the rate of fall of the body. Drag depends on the contact surface area and weight. More the surface area in contact, more would be the drag. The sitting position of the skydiver would experience less drag than the chest down position because of the less contact surface area of the body with the air molecules while in the former case. No two persons have identical body shape and weight. Hence, the rate of fall can be made nearly equal but not exactly equal. This is would be possible when they are having same body position.

3 0
3 years ago
What stops gravity from pulling you to the center of the earth
Artyom0805 [142]

Answer:

electron degeneracy pressure...or in other word electro magnetic repulsion

8 0
3 years ago
Read 2 more answers
We can model a lightning bolt as a very long, straight wire. If a lightning bolt carries a current of 30 kA, and you are unfortu
Liula [17]

Answer:

Magnetic field experienced = 4.5 × 10⁻⁴ T

Explanation:

The magnetic field around an infinite straight current-carrying wire at a distance r from the wire is given by

B = (μ₀I)/(2πr)

B = ?

I = 20 KA = 20000 A

r = 8.9 m

μ₀ = magnetic permeability = 1.257 × 10⁻⁶ T.m/A

B = (1.257 × 10⁻⁶ × 20000)/(2π×8.9) = 4.5 × 10⁻⁴ T

8 0
4 years ago
Un avión de rescate en Alaska deja caer un paquete de provisiones a un grupo de exploradores extraviados. Si el avión viaja hori
posledela

Answer:

180.4 m

Explanation:

The package in relation to the point where it was released falls a certain distance that is calculated by applying the horizontal motion formulas , as the horizontal speed of the plane and the height above the ground are known, the time that It takes the package to reach its destination and then the horizontal distance (x) is calculated from where it was dropped, as follows:    

$V_{ox}=v_x = 40 \ m/s$

   h = 100 m  

    x =?

     Height formula h:

     $h=g \times \frac{t^2}{2}$

      Time t is cleared:

     $t = \sqrt{\frac{2h}{g}}$

      $t = \sqrt{\frac{2 \times 100}{9.8}}$

      t = 4.51 sec

 Horizontal distance formula x:

       $x=V_x \times t$

        x = 40 m / sec x 4.51 sec

        x = 180.4 m

4 0
3 years ago
How to calculate the speed using time and distance
-Dominant- [34]

Answer:

speed = distance/time

Explanation:

distance -> s

speed -> v

time -> t

3 0
3 years ago
Other questions:
  • Describe Newton's First Law of motion. Provide an example to support your explanation. (4 points
    15·2 answers
  • What would happen if organ systems failed to wok together
    6·2 answers
  • What particular problem is the topic of the essay and what is the author’s main contention about how the Constitution addresses
    12·1 answer
  • Anybody know the answer to this ?
    9·1 answer
  • You and friend run up a fight of stairs that is 30 m high. Both of you reach the top in 12 seconds. Your weight is 570 N and you
    7·1 answer
  • A bicycle travels 10 km in 20 minutes. What is its average speed (in km/h) ?
    13·1 answer
  • A parallel-plate capacitor is formed from two 2.7 cm -diameter electrodes spaced 1.4 mm apart. The electric field strength insid
    6·1 answer
  • A rightward force is applied to a box in order to move it across the table at a constant velocity. (Ignore wind resistance).
    15·1 answer
  • What is the maximum absolute variation of any periodic function (e.g., a wave) ?
    8·1 answer
  • A bullet (m=20g) shot with a speed of 800 m/s hits an oak tree and sticks 4cm inside it.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!