Answer:
a. True
b. True
c. False
d. True
Explanation:
a). A a very low substrate concentration ,
. Thus according to the Machaelis-Menten equation becomes
![$V_0 = \frac{V_{max} \times [S]}{Km}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%7D%24)
Here since the
varies directly to the substrate concentration [S], the initial velocity is lower than the maximal velocity. Thus option (a) is true.
b). The Michaelis -Menten kinetics equation states that :
![$V_0 = \frac{V_{max} \times [S]}{Km+[S]}$](https://tex.z-dn.net/?f=%24V_0%20%3D%20%5Cfrac%7BV_%7Bmax%7D%20%5Ctimes%20%5BS%5D%7D%7BKm%2B%5BS%5D%7D%24)
Here the initial velocity changes directly with the substrate concentration as
is directly proportional to [S]. But
is same for any particular concentration of the enzymes. Thus, option (b) is true.
c). As the substrate concentration increases, the initial velocity also increases. Thus option (c) is false.
d). Option (d) explains the procedures to estimate the initial velocity which is correct. Thus, option (d) is true.
Answer:
CH₂
Explanation:
Given parameters:
Percentage composition:
Carbon = 40.1%
Hydrogen = 6.6%
Unknown:
Empirical formula of the compound = ?
Solution:
The empirical formula of a substance is its simplest formula.
Elements Carbon Hydrogen
Percentage
Composition 40.1 6.6
Molecular mass 12 1
Number of moles 40.1/12 6.6/1
3.342 6.6
Divide through by
the smallest 3.342/3.342 6.6/3.342
1 2
So the empirical formula of the compound is CH₂
Answer is "0.05 mol".
<em>Explanation;</em>
We can do calculation by using a simple formula as
n = m/M
Where, n is the number of moles of the substance (mol), m is the mass of the substance (g) and M is the molar mass of the substance (g/mol).
Here,
n = ?
m = 2.80 g
M = 56.08 g/mol
By substitution,
n = 2.80 g /56.08 g/mol
n = 0.0499 mol ≈ 0.05 mol