The Bohr's proposal for the angular momentum of an electron in Bohr's model of the hydrogen atom is:
L=(n*h)/(2π), where n is the number of the energy level and h is the Planck's constant. This equation shows us the quantization of angular momentum of the electron. So the correct answer is the second one: Planck's constant.
Given constant acceleration, we can get the final position of an object in terms of both its initial velocity and its acceleration using one of the equations of motion.
The equation that we will use is:
Xf = Xi + Vi*t + (1/2)*a*t^2
where:
Xf is the final position of the object
Xi is the initial position of the object
Vi is the initial velocity of the object
t is the time
a is the constant given acceleration
It is D. An object can acquire a net charge only when charges are transferred to or from it.
Answer:
Explanation:
Two moles of an ideal gas at 3.0 atm and 10°C are heated up to 150 °C. If the volume is held constant during this heating, what is the final pressure? a. 4.5 atm.