Answer:
The answer is 0.5 Hz
Explanation:
Its pretty easy to get the answer. One hertz (Hz) is equal to one cycle or period per second. So, just divide the period by the number of seconds.
1 period/2 secs = 1/2 Hz or 0.5 Hz
Answer: You do not specify what is being asked for. ∆E? ∆H?
∆E = (430 - 238) J = 192 J
∆H = 430 J
Explanation:
If asked for the value of ∆H the answer is simply the change in heat, and in the question, it states introduction of 430 J of heat is causing the system to expand.
Therefore ∆H = 430 J
If asked for ∆E, we know that ∆E = ±q (heat) + work (-P∆V) = ±q + w
The question states that 238 J of work are done AND the system expanded
(work is negative because expansion means work is done BY the system, releasing energy/heat... Conversely, if the system were compressed, work is done ON the system, absorbing heat/energy)
Therefore, ∆E = (430 - 238) J = 192 J
Answer:
12.31 m/s
Explanation:
If we recall from the previous knowledge we had about speed,
we will know that:
speed = distance/ time.
As such:
The average speed of the rider bicycle is
average speed = total distance/ total time
Mathematically, it can be computed as:





Answer:
16Hz
Explanation:
Given parameters:
Speed of sound = 400m/s
Wavelength = 25m
Unknown:
Frequency of the wave = ?
Solution:
To solve this problem;
V = F ∧
V is the velocity
F is the frequency
∧ is the wavelength
400 = F x 25
F = 16Hz
Using the Universal Gratitation Law, we have:
Again applying the formula in the new situation, comes:
Number 4If you notice any mistake in my english, please let me know, because i am not native.