1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
2 years ago
11

Explain the operation of a capacitor in a circuit

Physics
1 answer:
Virty [35]2 years ago
7 0

A capacitor is an electronic component that stores and releases electricity in a circuit.

You might be interested in
A block slides on a frictionless, horizontal surface with a speed of 1.32 m/s. The block encounters an unstretched spring and co
Rus_ich [418]

Answer:

Explanation:

The given time is 1 / 4 of the time period

So Time period  of oscillation.

= 4 x .4 =1.6 s

When the block reaches back its original position when it came in contact with the spring for the first time , the block and the spring will have maximum

velocity. After that spring starts unstretching , reducing its speed , so block loses contact as its velocity is not reduced .

So required velocity is the maximum velocity of the block while remaining in contact with the spring.

v ( max ) = w A = 1.32  m /s.

3 0
3 years ago
How much charge does a 9.0 v battery transfer from the negative to the positive terminal while doing 39 j of work?
sdas [7]
The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:
W=q \Delta V
where q is the charge and \Delta V is the potential difference.

In our problem, the work done is W=39 J while the potential difference of the battery is \Delta V = 9.0 V, so we can find the charge transferred by the battery:
q= \frac{W}{\Delta V}= \frac{39 J}{9.0 V}=4.33 C
3 0
3 years ago
What are the names of the 4 types of fronts? How are they created?
jeka57 [31]

Answer:

Stationary Front, warm front, cold front, Occluded Front.

Explanation:

Stationary Front. When the surface position of a front does not change (when two air masses are unable to push against each other; a draw), a stationary front is formed.

cold front is the leading edge of a cooler mass of air at ground level that replaces a warmer mass of air and lies within a pronounced surface trough of low pressure. It often forms behind an extratropical cyclone (to the west in the Northern Hemisphere, to the east in the Southern), at the leading edge of its cold air advection pattern—known as the cyclone's dry "conveyor belt" flow. Temperature differences across the boundary can exceed 30 °C (86 °F) from one side to the other. When enough moisture is present, rain can occur along the boundary. If there is significant instability along the boundary, a narrow line of thunderstorms can form along the frontal zone. If instability is weak, a broad shield of rain can move in behind the front, and evaporative cooling of the rain can increase the temperature difference across the front. Cold fronts are stronger in the fall and spring transition seasons and weakest during the summer.

A warm front is a density discontinuity located at the leading edge of a homogeneous warm air mass, and is typically located on the equator-facing edge of an isotherm gradient. Warm fronts lie within broader troughs of low pressure than cold fronts, and move more slowly than the cold fronts which usually follow because cold air is denser and less easy to remove from the Earth's surface. This also forces temperature differences across warm fronts to be broader in scale. Clouds ahead of the warm front are mostly stratiform, and rainfall gradually increases as the front approaches. Fog can also occur preceding a warm frontal passage. Clearing and warming is usually rapid after frontal passage. If the warm air mass is unstable, thunderstorms may be embedded among the stratiform clouds ahead of the front, and after frontal passage thundershowers may continue. On weather maps, the surface location of a warm front is marked with a red line of semicircles pointing in the direction of travel.

In meteorology, an occluded front is a weather front formed during the process of cyclogenesis. The classical view of an occluded front is that they are formed when a cold front overtakes a warm front, such that the warm air is separated (occluded) from the cyclone center at the surface. The point where the warm front becomes the occluded front is called the triple point; a new area of low-pressure that develops at this point is called a triple-point low. A more modern view of the formation process suggests that occluded fronts form directly during the wrap-up of the baroclinic zone during cyclogenesis, and then lengthen due to flow deformation and rotation around the cyclone.

3 0
2 years ago
Read 2 more answers
How do you calculate change in position? A. initial position times two B. final position plus initial position C. final position
e-lub [12.9K]
The answer is C. Final position minus initial position.
5 0
3 years ago
Find electric field at point p which is a distance l away from the both +q and -q
denis-greek [22]

Answer:

\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{I^{2} }+\frac{1}{4\times(pie)\times\text{E}} \times\frac{-q}{I^{2} }

Explanation:

As given point p is equidistant from both the charges

It must be in the middle of both the charges

Assuming all 3 points lie on the same line

Electric Field due a charge q at a point ,distance r away

=\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{r^{2} }

Where

  • q is the charge
  • r is the distance
  • E is the permittivity of medium

Let electric field due to charge q be F1 and -q be F2

I is the distance of P from q and also from charge -q

⇒

F1=\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{I^{2} }

F2=\frac{1}{4\times(pie)\times\text{E}} \times\frac{-q}{I^{2} }

⇒

F1+F2=\frac{1}{4\times(pie)\times\text{E}} \times\frac{q}{I^{2} }+\frac{1}{4\times(pie)\times\text{E}} \times\frac{-q}{I^{2} }

8 0
3 years ago
Other questions:
  • A circuit is made of 0.4 ohm wire, 150 ohm bulb and a 120ohm rheo stat connected inseries. Determine the total resistance of the
    14·1 answer
  • How is pressure related to force and surface area
    5·1 answer
  • A Danish astronomer who used the diameter of the earth's orbit in his calculation of the speed of light was .
    14·2 answers
  • During a test a rocket travels upward at 90 m/s , and when it is 50 m from the ground its engine fails. Determine the maximum he
    6·2 answers
  • There are_____________ centimeters in 1 meter.
    8·2 answers
  • Which of the following is the most likely end for a star that is small to average in size? A. blue main sequence B. red supergia
    5·2 answers
  • Two electromagnets are running with equal amounts of electric current. Electromagnet A uses a piece of iron as its metal core, w
    14·1 answer
  • Calculate the volume of a 5-g sample of pure gold
    12·1 answer
  • 1. What is the velocity of an 250-kg that has 6,250 J of energy?<br><br><br> Please help
    6·1 answer
  • Heart cells must contract simultaneously to move blood.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!