Possibly the third one down. I don't think that DNA was around in Crippen's time. I'm not a criminologist or associated fun and games, though.
Answer: the waves probably hits an open cavity
Explanation:
Sound waves transfers energy in form of vibration through water,the speed of sound is greatest in solids followed by liquids and gases,for we to observe such a reduction from 4000m/s to 1500m/s that means it sound had been transmitted through air like open cavity seen in intrusive rock beneath the earth.
Answer:
Michael's final velocity is 19.62 m/s.
Explanation:
We can find the final velocity of Michael by using the following kinematic equation:
(1)
Where:
: is the final velocity =?
: is the initial velocity = 1.62 m/s
a: is the acceleration = 1.2 m/s²
t: is the time = 15 s
By entering the above values into equation (1) we have:


Therefore, Michael's final velocity is 19.62 m/s.
I hope it helps you!
Answer:
θ₁ = 5.4°
θ₂ = 10.86°
Explanation:
The angle ca be found by using grating equation:
mλ = d Sinθ
where,
m = order of diffraction
λ = wavelength = 405.3 nm = 4.053 x 10⁻⁷ m
d = grating element = 1/230 lines/mm = 0.0043 mm/line = 4.3 x 10⁻⁶ m/line
θ = angle = ?
FOR m = 1:
(1)(4.053 x 10⁻⁷ m) = (4.3 x 10⁻⁶ m/line) Sin θ₁
Sin θ₁ = 0.09425
θ₁ = Sin⁻¹(0.09425)
<u>θ₁ = 5.4°</u>
<u></u>
FOR m = 2:
(2)(4.053 x 10⁻⁷ m) = (4.3 x 10⁻⁶ m/line) Sin θ₁
Sin θ₂ = 0.1885
θ₂ = Sin⁻¹(0.1885)
<u>θ₂ = 10.86°</u>
Answer:
2.75 m/s^2
Explanation:
The airplane's acceleration on the runway was 2.75 m/s^2
We can find the acceleration by using the equation: a = (v-u)/t
where a is acceleration, v is final velocity, u is initial velocity, and t is time.
In this case, v is 71 m/s, u is 0 m/s, and t is 26.1 s Therefore: a = (71-0)/26.1
a = 2.75 m/s^2