Answer:
x ’= 1,735 m, measured from the far left
Explanation:
For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.
Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive
They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,
the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar
x_{cm} = 1.2 -1
x_ {cm} = 0.2 m
Σ τ = 0
w₁ 1.2 + mg 0.2 - W₂ x = 0
x =
x = 
let's calculate
x =
2.9 1.2 + 4 0.2 / 8
x = 0.535 m
measured from the pivot point
measured from the far left is
x’= 1,2 + x
x'= 1.2 + 0.535
x ’= 1,735 m
Answer:
In the picture
Explanation:
I hope that it's a clear solution and explanation, hope that helps.
Answer:
The distance covered by puck A before collision is 
Explanation:
From the question we are told that
The label on the two hockey pucks is A and B
The distance between the two hockey pucks is D 18.0 m
The speed of puck A is 
The speed of puck B is 
The distance covered by puck A is mathematically represented as

=> 
The distance covered by puck B is mathematically represented as

=> 
Since the time take before collision is the same

substituting values

=> 
=> 
I'd say b, precise, here.
If there's an error somewhere in the experiment or project, then it is consistently .... wrong. So, just 'cos you measure something precisely, it doesn't mean that you've measured it accurately. Maybe an example would be a measurement of length. If you used a metal ruler at zero degrees C, you can measure to say half a millimetre. A series of measurements of the same object would give very similar readings. But, if you used same metal ruler at, say 100 celsius (implausible) then you'd probably get a different set of readings. 'cos of the expansion of the metal ruler.
Answer:
Magnetic force obeys an inverse square law with distance
Explanation: