Answer:
Radio waves
Explanation:
The electromagnetic spectrum includes all different types of waves, which are usually classified depending on their frequency. Ordering them from the highest frequency to the lowest frequency, they are:
- Gamma rays
- X-rays
- Ultraviolet
- Visible light
- Infrared radiation
- Microwaves
- Radio waves
Radio waves are the electromagnetic waves with lowest frequency, their frequency is lower than 300 GHz (
) and therefore they are the electromagnetic waves with lowest energy (in fact, the energy of an electromagnetic wave is proportional to its frequency). They are generally used for radio and telecommunications since this type of waves can travel up to long distances.
Answer:
The best glasses have a wider bowl than rim to allow for proper swirling. The swirl releases volatile aroma compounds and creates a vortex in the center of the glass towards which these compounds are drawn
Explanation:\\\
We use the Rydberg Equation for this which is expressed as:
<span>1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
</span>
where lambda is the wavelength, where n represents the final and initial states. Brackett series means that the initial orbit that electron was there is 4 and R is equal to 1.0979x10^7m<span>. Thus,
</span>
1/ lambda = R [ 1/(n2)^2 - 1/(n1)^2]
1/1.0979x10^7m = 1.0979x10^7m [ 1/(n2)^2 - 1/(4)^2]
Solving for n2, we obtain n=1.
<u>Answer:</u> The ball is travelling with a speed of 5.5 m/s after hitting the <u>bottle.</u>
<u>Explanation:</u>
To calculate the speed of ball after the collision, we use the equation of law of conservation of momentum, which is given by:

where,
are the mass, initial velocity and final velocity of ball.
are the mass, initial velocity and final velocity of bottle.
We are given:

Putting values in above equation, we get:

Hence, the ball is travelling with a speed of 5.5 m/s after hitting the bottle.
Answer:
theres an decrease in temperature because 252,000 is more than 42,000. so its colder and not as hot as 252,000.
Explanation: