Answer:
The direct answer to the question as written is as follows: nothing happens to gravity when someone jumps up - gravity continues exerting a force on the body of that particular someone proportional to (mass of someone) x (mass of Earth) / (distance squared). What you might be asking, however, is what is the net force acting on the body of someone jumping up. At the moment of someone jumping up there is an upward acceleration, i.e., an upward-directed force which counteracts the gravitational force - this is the net force ( a result of the jump force minus gravity). From that moment on, only gravity acts on the body. The someone moves upward gradually decelerating to the downward gravitational acceleration until they reaches the peak of the jump (zero velocity). Then, back to Earth.
Answer:
K = ρL²g
Explanation:
Consider L as the length of the raft inside the water when the raft is displaced through additional distance y;
Then:
F = upthrust ( restoring force) = weight of the liquid displaced.

where;
A = L²

F = ky.
Then,


Divide both sides by y
K = ρL²g
These are the correct solutions:
It is 11 a.m. in the Eastern Time Zone; therefore, it is 8 a.m. in the Pacific Time Zone. (3 hrs behind)
It is 3 p.m. in the Central Time Zone; therefore, 2 p.m. in the Mountain Time Zone. (1 hr behind)
It is 6 p.m. in the Pacific Time Zone; therefore, it is 4 p.m in Hawaii. (2 or 3 hours behind depending on time of year)
It is 6 p.m. in Hawaii; therefore, it is 11 p.m. in the Eastern Time Zone (5 or 6 hours behind depending on time of year).
It is 3 p.m. in Hawaii; therefore, it is 6 p.m. in the Mountain Time Zone (3 or 4 hours behind depending on time of year).