In studying chemistry, one should learn how to read the periodic table and periodic trends in the table.. Of course, you should also know the abbreviations of each element in it so that you can identify what element is in chemical structures. Memorizing and knowing it by heart is the best way. You should also study what we call chemical nomenclature which is naming combinations of elements. Elements when combined may form ionic compounds, bonds or acids. Knowing what element reacts with another will also be necessary that's why the concept of chemical reactions must be further studied.
Arrhenius' Law relates activation energy, Ea, rate constant, K, and temperature, T as per this equation:
K (T) = A * e ^ (-Ea / RT), where R is the universal constant of gases and A is a constant which accounts for collision frequency..
Then you can find the ration between K's at two different temperatures as:
K1 = A * e ^ (-Ea / RT1)
K2 = A* e ^(-Ea / RT2)
=> K1 / K2 = e ^ { (-Ea / RT1) - Ea / RT2) }
=> K1 / K2 = e ^ {(-Ea/ R ) *( 1 / T1 - 1 T2) }
=> K1 / K2 = e^ { (-205,000 j/mol / 8.314 j/mol*k )* ( 1 / 505K - 1/ 485K) }
=> K1 / K2 = e ^ (2.0134494) ≈ 7.5
Answer: 7.5
Answer:
The pressure increases by a factor of four.
Explanation:
Let's consider a gas at a given temperature and pressure (T₁, P₁). The absolute temperature of a gas is increased four times (T₂ = 4 T₁) while maintaining a constant volume. We can assess the effect on the pressure (P₂) by using Gay Lussac's law.
P₁/T₁ = P₂/T₂
P₂ = P₁ × T₂/T₁
P₂ = P₁ × 4 T₁/T₁
P₂ = 4 P₁
The pressure increases by a factor of four.
Answer:
<u>~</u><u>Law of Conservation of </u><u>energy~</u>
The law of conservation of energy states that energy can neither be created nor destroyed, only energy can be converted from one form to another.
<span>www.science.uwaterloo.ca/~cchieh/cact/c120/siunits.html</span>