Answer:
299,792,458 metres per second
Explanation:
Answer:
C
Explanation:
- Let acceleration due to gravity @ massive planet be a = 30 m/s^2
- Let acceleration due to gravity @ earth be g = 30 m/s^2
Solution:
- The average time taken for the ball to cover a distance h from chin to ground with acceleration a on massive planet is:
t = v / a
t = v / 30
- The average time taken for the ball to cover a distance h from chin to ground with acceleration g on earth is:
t = v / g
t = v / 9.81
- Hence, we can see the average time taken by the ball on massive planet is less than that on earth to reach back to its initial position. Hence, option C
To solve this problem it is necessary to apply the concepts related to the conservation of energy, specifically the potential elastic energy against the kinetic energy of the body.
By definition this could be described as


Where
k = Spring constant
x = Displacement
m = mass
v = Velocity
This point is basically telling us that all the energy in charge of compressing the spring is transformed into the energy that allows the 'impulse' seen in terms of body speed.
If we rearrange the equation to find v we have

Our values are given as



Replacing at our equation we have then,



Therefore he speed of the car before impact, assuming no energy is lost in the collision with the wall is 2.37m/s
Answer:
The number of turns of the inductor is 2000 turns.
Explanation:
Given;
emf of the inductor, E = 0.8 V
the rate of change of current with time, dI/dt = 10 A/s
steady current in the solenoid, I = 0.2 A
flux per turn, Ф = 8.0 μWb per
Determine the inductance of the solenoid, L
E = L(dI/dt)
L = E / (dI/dt)
L = 0.8 / (10)
L = 0.08 H
The inductance of the solenoid is given by;

Also, the magnetic field of the solenoid is given by;

I is 0.2 A



But Ф = BA

Therefore, the number of turns of the inductor is 2000 turns.
<h3><u>Answer;</u></h3>
= 4.19 Joules
<h3><u>Solution;</u></h3>
Energy stored in capacitor = U = 8.38 J
U =(1/2)CV^2
C =(eo)A/d
C*d=(eo)A=constant
C2d2=C1d1
C2=C1d1/d2
Initial separation between the plates =d1= 2.30mm .
Final separation = d2 = 1.15 mm
But; Energy=U =(1/2)q^2/C
U2C2 = U1C1
U2 =U1C1 /C2
U2 =U1d2/d1
Final energy = Uf = initial energy × d2/d1
= 8.38 ×1.15/2.30
= 4.19 Joules
Thus; The final energy = 4.19 Joules