The answer is B tell me if I am wrong.
Answer:
Explanation:
<u></u>
<u>1. Formulae:</u>
Where:
- E = kinetic energy of the particle
- λ = de-Broglie wavelength
- m = mass of the particle
- v = speed of the particle
- h = Planck constant
<u><em>2. Reasoning</em></u>
An alha particle contains 2 neutrons and 2 protons, thus its mass number is 4.
A proton has mass number 1.
Thus, the relative masses of an alpha particle and a proton are:

For the kinetic energies you find:


Thus:


From de-Broglie equation, λ = h/(mv)

Answer:
heat energy and nuclear energy
Explanation:
as a resukt of nuclear fusion, the sun produces two types of energy.
1. heat energy
2. nuclear energy
Part a.
u = 0, the initial velocity
v = 60 mi/h, the final velocity
a = 2.35 m/s², the acceleration.
Note that
1 m = 1609.34 m.
Therefore
v = (60 mi/h)*(1609.34 m/mi)*(1/3600 h/s) = 26.822 m/s
Use the formula
v = u + at
(26.822 m/s) = (2.35 m/s²)*(t s)
t = 26.822/2.35 = 11.4 s
Answer: 11.4 s
Part b.
We already determined that v = 60 mi/h = 26.822 m/s.
t = 0.6 s
Therefore
(26.822 m/s) = (a m/s²)*(0.6 s)
a = 26.822/0.6 = 44.7 m/s²
Answer: 44.7 m/s²
For a given wave in a given medium, if the frequency doubles,
the wavelength becomes 50% shorter.
That is, it becomes half as long as it was originally.