Neglecting friction and air resistance, the first hill must be built 4 times higher than it is now.
Answer:
i think the answer is constant
Answer:
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
Explanation:
Given data
Φ = 5.32 eV
to find out
the longest wavelength
solution
we know that
hf = k(maximum) +Ф ...............1
here we consider k(maximum ) will be zero because photon wavelength max when low photon energy
so hf = 0
and hc/ λ = +Ф
so λ = hc/Ф ................2
now put value hc = 1240 ev nm and Φ = 5.32 eV
so hc = 1240 / 5.32
hc = 233 nm
the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm
answer for number nine is C
Convergent boundaries: where two plates are colliding. Subduction zones occur when one or both of the tectonic plates are composed of oceanic crust.
Divergent boundaries – where two plates are moving apart. ...
Transform boundaries – where plates slide passed each other.
answer for number eight is d.
hope this help you
Answer:
Explanation:
Formula
W = I * E
Givens
W = 150
E = 120
I = ?
Solution
150 = I * 120 Divide by 120
150/120 = I
5/4 = I
I = 1.25
Note: This is an edited note. You have to assume that 120 is the RMS voltage in order to go any further. That means that the peak voltage is √2 times the size of 120. The current has the same note applied to it. If the voltage is its rms value, then the current must (assuming the properties of the bulb do not change)
On the other hand, if the voltage is the peak value at 120 then 1.25 will be correct.
However I would go with the other answerer's post and multiply both values by √2