"Balanced" means that if there's something pulling one way, then there's also
something else pulling the other way.
-- If there's a kid sitting on one end of a see-saw, and another one with the
same weight sitting on the other end, then the see-saw is balanced, and
neither end goes up or down. It's just as if there's nobody sitting on it.
-- If there's a tug-of-war going on, and there are 300 freshmen pulling on one
end of a rope, and another 300 freshmen pulling in the opposite direction on
the other end of the rope, then the hanky hanging from the middle of the rope
doesn't move. The pulls on the rope are balanced, and it's just as if nobody
is pulling on it at all.
-- If a lady in the supermarket is pushing her shopping cart up the aisle, and her
two little kids are in front of the cart pushing it in the other direction, backwards,
toward her. If the kids are strong enough, then the forces on the cart can be
balanced. Then the cart doesn't move at all, and it's just as if nobody is pushing
on it at all.
From these examples, you can see a few things:
-- There's no such thing as "a balanced force" or "an unbalanced force".
It's a <em><u>group</u> of forces</em> that is either balanced or unbalanced.
-- The group of forces is balanced if their strengths and directions are
just right so that each force is canceled out by one or more of the others.
-- When the group of forces on an object is balanced, then the effect on the
object is just as if there were no force on it at all.
Answer:
4 hoop, disk, sphere
Explanation:
Because
We are given data that
Hoop, disk, sphere have Same mass and radius
So let
And Initial angular velocity, = 0
The Force on each be F
And Time = t
Also let
Radius of each = r
So let's find the inertia shall we!!
I1 = m r² /2
= 0.5 mr² the his is for dis
I2 = m r² for hoop
And
Moment of inertia of sphere wiil be
I3 = (2/5) mr²
= 0.4 mr²
So
ωf = ωi + α t
= 0 + ( τ / I ) t
= ( F r / I ) t
So we can see that
ωf is inversely proportional to moment of inertia.
And so we take the
Order of I ( least to greatest ) :
I3 (sphere) , I1 (disk) , I2 (hoop) , ,
Order of ωf: ( least to greatest)
That of omega xf is the reverse of inertial so
hoop, disk, sphere
Option - 4
-- She went up for 0.4 sec and down for 0.4 sec.
-- The vertical distance traveled in gravity during ' t ' seconds is
D = (1/2) x (g) x (t)²
= (1/2) (9.8 m/s²) (0.4 sec)²
= (4.9 m/s²) x (0.16 s²)
= 0.784 meter ( B )
Different: The weak nuclear force is responsible for radioactive decay within an atom of a substance, while the electromagnetic force causes electrostatic force between charged particles.
Different: The weak force has a very small range of effectiveness (where the force can be felt) while the electromagnetic force has an infinite range.
Same: Both forces act within an nucleus, or on a nuclear level.
Same: The weak nuclear force is mediated by charged particles called bosons, and the electrostatic force is only present within charged objects
The last one may be a bit of a stretch but I hope this helped a bit!
Answer:
A) attachment.
Explanation:
The psychiatrist and psychoanalyst John Bowlby (1907 - 1990) believed that the causes of mental health and behavioral problems could be attributed to early childhood. In fact, John Bowlby's <u>attachment theory states that we have been biologically preprogrammed to build bonds with others and that they help us survive.
</u>
Bowlby was greatly influenced by ethological theory in general, but above all by Konrad Lorenz's study of the imprint done with ducks and geese in the 50s. From this, Lorenz demonstrated the survival value of the attachment bond by Your innate character
Thus, Bowlby thought that attachment behaviors were instinctive and that, in addition, their activation depended on any condition that could threaten the achievement of proximity, such as separation, insecurity or fear.
John Bowlby's attachment theory defends that children are biologically programmed to form bonds with others.