Incomplete question. However, I provided a brief about Kinetic energy generation.
<u>Explanation:</u>
Interestingly, Kinetic energy in simple terms refers to the energy possessed by a body in motion.
It is often calculated using the formula E =
A good example of creating even more kinetic energy is a hand crank toy car that moves after you wind it a little, when the car moves it is generating another measure of K.E.
Explanation:
Equation for energy balance will be as follows.


Hence, 
Therefore, we will calculate the final temperature as follows.

= 868.03 R
Now, we will calculate the mass as follows.
m = 
= 
= 1.031 lbm
Hence,

Putting the values into the above equation as follows.


= 655.2 Btu
Thus, we can conclude that work done by paddle wheel is 655.2 Btu.
When you say full valence shell, are you talking about a valence electron shell?
I am learning about atoms and i know a little bit
here as it is given that x component of the vector is positive while y component of the vector is negative so we can say the vector must inclined in Fourth quadrant.
So angle must be more than 270 degree and less than 360 degree
Now in order to find the value we can say that




so it is inclined at above angle with X axis in fourth quadrant
Now if angle is to be measured counterclockwise then its magnitude will be

so the correct answer will be 305 degree
4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:
