Answer:
163.33 Watts
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 40 Kg
Height (h) = 25 m
Time (t) = 1 min
Power (P) =..?
Next, we shall determine the energy. This can be obtained as follow:
Mass (m) = 40 Kg
Height (h) = 25 m
Acceleration due to gravity (g) = 9.8 m/s²
Energy (E) =?
E = mgh
E = 40 × 9.8 × 255
E = 9800 J
Finally, we shall determine the power. This can be obtained as illustrated below:
Time (t) = 1 min = 60 s
Energy (E) = 9800 J
Power (P) =?
P = E/t
P = 9800 / 60
P = 163.33 Watts
Thus, the power required is 163.33 Watts
Answer:
<em>W=700 Joule</em>
Explanation:
<u>Physics Work
</u>
Is the dot product of the force vector by the displacement vector

When both the force and the displacements are pointed in the same direction, the formula reduces to its scalar version

The weightlifter is applying a net force of 350 N to lift the weights a distance of 2 m, thus the net work done is

The lithosphere because it includes the outer region of the earth including the crust and outer mantle
Answer:
d = 61.75 m
Explanation:
Given that,
A ball droped from a building.
We need to find how fast is it traveling after falling 3.55 s.
As it is dropped, its initial velocity is equal to 0.
Let d is the distance it covers after falling 3.55 s.
We can use second equation of motion to find d.

Here, u = 0 and a =g

So, it will cover 61.75 m after falling 3.55 seconds.
F = kq1q2/r<span>2
Where,
F - Coulomb Force
k - constant value which is equal to </span>8.98 × 10^9<span> newton square metre per square coulomb
q1 and q2 - two electric charges
r - distance.
5.8 * 10^5 = 1.5 * 10^-9 / r^2
</span><span>5.8 * 10^5 r^2 = 1.5*10^-9
</span>r^2 = 0.0000258620
r = 0.0050854694
So the distance is equal to 5.09 x 10^-3