Using the law of conservation of angular momentum, we have
<span>I1 w1 = I2 w2 </span>
<span>ie., m1r^2/2 x w1 = ( m1r^2/2 + m2r^2 ) w2 </span>
<span>ie., new angular velocity w2 = m1 w1 / ( m1+ 2m2) = 125 x 3.1 / ( 125 + 2 x39.5 ) </span>
<span>= 1.8995 = 1.9 rad /sec ( nearly )</span>
Answer:
The displacement is 
The distance is 
Explanation:
From the question we are told that
The height from which the ball is dropped is 
The height attained at the first bounce is 
The height attained at the second bounce is 
The height attained at the third bounce is 
Note : When calculating displacement we consider the direction of motion
Generally given that upward is positive the total displacement of the ball is mathematically represented as

Here the 0 show that there was no bounce back to the point where Billy released the ball

=> 
Generally the distance covered by the ball is mathematically represented as

The 2 shows that the ball traveled the height two times

=> 
Answer:
The hydro static force on the back of the dam is 
Explanation:
Given that,
Width b= 1000 m
Depth d= 200 m
We need to calculate the average pressure
Using formula of average pressure

Put the value into the formula


We need to calculate the hydro static force on the back of the dam
Using formula of force

Put the value into the formula


Hence, The hydro static force on the back of the dam is 
I think this is vectors. Sketch the two vectors A and B on the x axis and then find their magnitudes using cosine... i would like to know if i am correct.
Every object has thermal energy (better word than heat, since we associate that with high temperatures). This is actually the molecules vibrating, moving a lot. More thermal energy means more vibrating, and thus also expanding in volume.