Answer:
T = 480.2N
Explanation:
In order to find the required force, you take into account that the sum of forces must be equal to zero if the object has a constant speed.
The forces on the boxes are:
(1)
T: tension of the rope
M: mass of the boxes 0= 49kg
g: gravitational acceleration = 9.8m/s^2
The pulley is frictionless, then, you can assume that the tension of the rope T, is equal to the force that the woman makes.
By using the equation (1) you obtain:

The woman needs to pull the rope at 480.2N
<span>An automobile with a mass of 1450 kg is parked on a moving flatbed railcar; the flatbed is 1.5 m above the ground. The railcar has a mass of 38,500 kg and is moving to the right at a constant speed of 8.7 m/s on a frictionless rail...
</span>
A 500 g ball swings in a vertical circle at the end of a 1.4-m-long string. when the ball is at the bottom of the circle, the tension in the string is 18 n.
Answer:
The object will move to Xfinal = 7.5m
Explanation:
By relating the final velocity of the object and its acceleration, I can obtain the time required to reach this velocity point:
Vf= a × t ⇒ t= (7.2 m/s) / (4.2( m/s^2)) = 1,7143 s
With the equation of the total space traveled and the previously determined time I can obtain the end point of the object on the x-axis:
Xfinal= X0 + /1/2) × a × (t^2) = 3.9m + (1/2) × 4.2( m/s^2) × ((1,7143 s) ^2) =
= 3.9m + 3.6m = 7.5m