THe best answer would be observation because you can see that all 3 are made up of water which you don't need to infer because you have the proof when you look at all 3 different types of precipitation.
I hope this helps you out.
If you could hear it at all, it would sound very soft.
Answer:
(a)T= M2 × g, (b)T= (M1 + M2)g, (c)T= M2 (a + g) and (d)T=(M1 + M2) (a + g)
Explanation:
M1 is hanged upper and M2 is lower at Rest.
(a) For M2
T2 = Weight of the Body M2= M2 × g
(b) T1 = Weight of the Body M2 + Weight of the Body M2
T1 = M1 g + M2 g = (M1 + M2)g
M1 is hanged upper and M2 is lower at accelerated upwards ( F = T - W)
(c) For M2
⇒T = M2a + M2g = M2 (a + g)
(d) For M1
T = (M1 + M2) a + (M1 + M2) g
⇒ T = (M1 + M2) (a + g)
I say it is false that is the correct answer
Number of barrels are 3.0. Each barrel contains 42 gallons of oil. Thus, total volume of oil will be 42×3=126 gallons.
Converting gallons into m^{3}
1 gallon=0.00378 m^{3}
Thus, 126 gallons=0.4769 m^{3}
Thickness of oil film is 2.5\times 10^{2} nm, converting it into meters as follows:
1 nm=10^{-9} m
Thus,
2.5\times 10^{2} nm=1.5\times 10^{-7}m
Now, volume V of oil is related to area A and thickness T as follows:
V=A×T
rearranging,
A=\frac{V}{T}=\frac{0.4769 m^{3}}{2\times 10^{-7}m}=2.38\times 10^{6}m^{2}
Thus, square meters of oil will be 2.38\times 10^{6}m^{2}