Based on the calculation of the resultant of vector forces:
- the resultant force due to the quadriceps is 1795 N
- the resultant force due to the quadriceps is 1975 N. Training and strengthening the vastus medialis results in a greater force of muscle contraction.
<h3>What is the resultant force due to the quadriceps?</h3>
The resultant of more than two vector forces is given by:
where:
- Fₓ is the sum of the horizontal components of the forces
- Fₙ is the sum of the vertical components of the forces
- Fx = F₁cosθ + F₂cosθ + F₃cosθ + F₄cosθ
- Fₙ = F₁sinθ + F₂sinθ + F₃sinθ + F₄sinθ
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 480 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 480 * cos 55
Fx = -280.6 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 480 * sin 55
Fₙ = 1773.1 N
then:
F = √(-280.6)² + ( 1773.1)²
F = 1795.16 N
F ≈ 1795 N
Therefore, the resultant force due to the quadriceps is 1795 N
<h3>What would happen if the vastus medialis was trained and strengthened to contract with 720N of force?</h3>
From the new information provided:
- F₁ = 680N, θ = 90 = 30 = 120°
- F₂ = 220 N, θ = 90 + 16 = 106°
- F₃ = 600 N, θ = 90 + 15 = 105°
- F₄ = 720 N, θ = 90 - 35 = 55°
then:
Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 720 * cos 55
Fx = -142.95 N
Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 720 * sin 55
Fₙ = 1969.72 N
then:
F = √(-142.95)² + ( 1969.72)²
F = 1974.9 N
F ≈ 1975 N
Therefore, the resultant force due to the quadriceps is 1975 N.
Training and strengthening the vastus medialis results in a greater force of muscle contraction.
Learn more about resultant of forces at: brainly.com/question/25239010
Top left: slowing down
Top right: not moving
Bottom left: moving at a constant speed
Bottom right: speeding up
There’s 10mm in a cm: 22mm
Answer:
Turn the heater on
Explanation:
There are two main forces involved in a balloon flight
The downward force is the total weight of the balloon: the air it contains, the gas bag, the basket, the passengers, etc.
The upward force is the weight of the of the air the balloon displaces.
During level flight
,
buoyant force = weight of displaced air - total weight of balloon
If you increase the temperature of the air in the bag, the air molecules spread out and leave through the bottom of the bag.
The balloon still has the same volume, so the weight of displaced outside air stays the same.
However, the balloon has lost some hot inside air, so its total weight decreases.
The upward force is greater than the downward force, so the balloon rises.
C. Newtons third law of motion
Because eventually, the frictional forces will slow you to a halt. Newton's Third Law of Motion For every action there is an equal and opposite reaction. When they push off against the ice, or "stroke" with their skates, they are applying a force down and back against the ground.
Hope this helps!