<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>1</u>
- Initial velocity=u=0m/s
- Final velocity=v=10m/s
- Time=10s=t




<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>2</u>
- initial velocity=0m/s=u
- Final velocity=v=0.25m/s
- Time=t=2s



Person-1 is accelerating faster.
If you press on your arm force is applied work done is if it moves.
One answer could be if I was to press my hand on a table.
Have a great day!
<u>We are given:</u>
Mass of Neptune = 1.03 * 10²⁶ kg
Distance from the center of Neptune (r) = 2.27 * 10⁷
now, computing the value of the acceleration due to gravity (g)
<u>Finding g:</u>
We know the formula:
g = G(mass of planet) / (r)²
g = [6.67 * 10⁻¹¹ * 1.03*10²⁶] / (2.27*10⁷) [since G is 6.67*10⁻¹¹]
g = (6.87 * 10¹⁵) / (5.15 * 10¹⁴)
which can be rewritten as:
g = (6.87 * 10¹⁵ * 10⁻¹⁴) / 5.15
g = (6.87 * 10¹⁵⁻¹⁴) / 5.15
g = (6.87/5.15) * 10
g = 1.34 * 10
g = 13.4 m/s² <em>(approx)</em>
Answer:
g' = 10.12m/s^2
Explanation:
In order to calculate the acceleration due to gravity at the top of the mountain, you first calculate the length of the pendulum, by using the information about the period at the sea level.
You use the following formula:
(1)
l: length of the pendulum = ?
g: acceleration due to gravity at sea level = 9.79m/s^2
T: period of the pendulum at sea level = 1.2s
You solve for l in the equation (1):

Next, you use the information about the length of the pendulum and the period at the top of the mountain, to calculate the acceleration due to gravity in such a place:

g': acceleration due to gravity at the top of the mountain
T': new period of the pendulum

The acceleration due to gravity at the top of the mountain is 10.12m/s^2