A testing instrument that's used to measure electrical signals
in a circuit and display them as waveforms on a screen is called
an oscilloscope.
Answer:
0.767m
Explanation:
We are given that the time interval between each droplet is equal.
We are also given that the fourth drop is just dripping from the shower when the first hits the floor.
If they fall at the same time interval and we know that the distance between the shower head and floor are the same, they must therefore fall at the same velocity.
The distance between each drop has to be the same given that they fall at equal time intervals.
Let this distance be x.
We can then partition the entire height of the system into three parts (as shown in the diagram).
Hence, we can say that:
x + x + x = 2.3m
3x = 2.3m
=> x = 2.3/3 = 0.767m
Therefore, at the time the first drop hits the floor, the third drop is only 0.767 m below the shower head.
Answer:
a) k= 3232.30 N / m, b) f = 4,410 Hz
Explanation:
In this exercise, the car + spring system is oscillating in the form of a simple harmonic motion, as the four springs are in parallel, the force is the sum of the 4 Hocke forces.
The expression for the angular velocity is
w = √k/m
the angular velocity is related to the period
w = 2π / T
we substitute
T = 2
√m/ k
a) empty car
k = 4π² m / T²
k = 4 π² 1310/2 2
k = 12929.18 N / m
This is the equivalent constant of the short springs
F1 + F2 + F3 + F4 = k_eq x
k x + kx + kx + kx = k_eq x
k_eq = 4 k
k = k_eq / 4
k = 12 929.18 / 4
k= 3232.30 N / m
b) the frequency of oscillation when carrying four passengers.
In this case the plus is the mass of the vehicle plus the masses of the passengers
m_total = 1360 + 4 70
m_total = 1640 kg
angular velocity and frequency are related
w = 2pi f
we substitute
2 pi f = Ra K / m
in this case the spring constant changes us
k_eq = 12929.18 N / m
f = 1 / 2π √ 12929.18 / 1640
f = π / 2 2.80778
f = 4,410 Hz
Fusion,melting,vaporization,submlimination are examples of endothermic changes