Answer:
The percentage power lost in the transmission line if the voltage not stepped up is 50%.
Explanation:
Given that,
Current = 60 A
Voltage = 120 V
Resistance = 1.0 ohm
We need to calculate the power
Using formula of power

Where,I =current
V = voltage
Put the value into the formula


We need to calculate the percentage power lost in the transmission line
If the voltage is not stepped up
Then, the power loss

Put the value into the formula


The percentage power loss P''


Hence, The percentage power lost in the transmission line if the voltage not stepped up is 50%.
Here,
Load distance (Ld) = 30 cm
Effort distance (Ed) = 60 cm
Load (L) = 200N
Effort (E) = ?
Now, By using formula,
or, E * Ed = L * Ld
or, E * 60 = 200 * 30
or, E = 6000/60
◆ E = 100N
This is a Right answer...
I hope you understand...
Answer:
Explanation:
Frictional force acting on the child = μ mg cosθ
, μ is coefficient of kinetic friction , m is mass of child θ is inclination
work done by frictional force
μ mg cosθ x d , d is displacement on inclined plane
work done = .13 x 276 x cos34 x 5.9
= 175.5 J
This work will be converted into heat energy.
b ) Initial energy of child = mgh + 1/2 m v ² , h is height , v is initial velocity
= 276 x 5.9 sin34 + 1/2 x 276 / 9.8 x .518² [ mass m = 276 / g ]
= 910.59 + 3.77
= 914.36 J
loss of energy due to friction = 175.5
Net energy at the bottom
= 738.86 J
If v be the velocity at the bottom
1/2 m v² = 738 .86
.5 x (276 / 9.8) x v² = 738.86
v² = 52.47
v = 7.24 m /s .
Technically, we don't have the information needed to calculate the current,
because you haven't mentioned the units of the 3.5 .
Since the 3.5 is a resistance, we strongly suspect ... and we'll therefore
assume ... that the 3.5 has the units of ohms. Then . . .
Current = (voltage) / (resistance) = (1.5/3.5) = <em>3/7 of an Ampere</em>.
(429 mA, rounded)
Answer:
1.2
Explanation:
2.0 mol O₂ × (3 mol CO₂ / 5 mol O₂) = 1.2 mol CO₂