D. Kinetic energy to electrical energy
Answer:
If the observer is stationary but the source moves toward the observer at a speed vs, the observer still intercepts more waves per second and the frequency goes up. This time it is the wavelength of the wave received by the observer that is effectively shifted by the motion, rather than the speed.
Answer:
Conduction is usually faster in certain solids and liquids than in gases. Materials that are good conductors of thermal energy are called thermal conductors. Metals are especially good thermal conductors because they have freely moving electrons that can transfer thermal energy quickly and easily.
Heat transfer by convection happens through the air, and there are millions of minuscule air spaces between the fibers. Heat transfer by radiation is also slow since one fiber must radiate its heat to another.
When we give heat then kinetic energy is increase and this heat is transferred from hot metal to cold metal through this free electrons. As in insulator the free electrons are negligible so that the heat is not transferred from hot junction to cold junction due to absence of this free electrons.
Explanation:
maek me as brainliest
The resistance of a single light bulb is 220 ohms per bulb.
<h3>What is Ohm's Law?</h3>
Ohm's Law is a formula used to determine how voltage, current, and resistance in an electrical circuit relate to one another.
Ohm's Law (E = IR) is as basic to students of electronics as Einstein's Relativity equation (E = mc2) is to physicists.
E = I x R
The formula reads voltage = current x resistance, or V = A xΩ., or volts = amps x ohms.
110volts divided by .25amps = 440 ohms. 440 divided by 2 =220 ohms per bulb.
R = 110/(2*0.25) = 220 ohms
to learn more about Ohms law go to - brainly.com/question/14296509
#SPJ4
Answer:

Explanation:
Maximum height of the pumpkin, 
Initial speed, v = 22 m/s
We need to find the angle with which the pumpkin is fired. the maximum height of the projectile is given by :

On rearranging the above equation, to find the angle as :



So, the angle with which the pumpkin is fired is 39.49 degrees. Hence, this is the required solution.