100N describes the weight of the sandbag, while 100kg is the mass of the sandbag.
To calculate acceleration, divide your weight by the mass, thus the accleration is:
The static frictional force is greater than the kinetic frictional force, so the static frictional force is greater than 1200 N.
Atomic mass = number of protons + number of neutrons = 4+5 = 9 amu
Answer:
a) t = 20 [s]
b) Can't land
Explanation:
To solve this problem we must use kinematics equations, it is of great importance to note that when the plane lands it slows down until it reaches rest, ie the final speed will be zero.
a)

where:
Vf = final velocity = 0
Vi = initial velocity = 100 [m/s]
a = desacceleration = 5 [m/s^2]
t = time [s]
Note: the negative sign of the equation means that the aircraft slows down as it stops.
0 = 100 - 5*t
5*t = 100
t = 20 [s]
b)
Now we can find the distance using the following kinematics equation.

x - xo = distance [m]
x -xo = (0*20) + (0.5*5*20^2)
x - xo = 1000 [m]
1000 [m] = 1 [km]
And the runaway is 0.8 [km], therefore the jetplane needs 1 [km] to land. So the jetpalne can't land
Breathe and now I’m just filling in more letters so it’ll go thru