Answer:
- 2.7 x 10^-6 J
Explanation:
q1 = 1 nC at x = 0 cm
q2 = - 1 nC at x = 1 cm
q3 = 4 nC at x = 2 cm
The formula for the potential energy between the two charges is given by

where r be the distance between the two charges
By use of superposition principle, the total energy of the system is given by



U = - 2.7 x 10^-6 J
Answer:
when the ground is very hot and the air is cool.
Explanation:
The hot earth warms a layer of air right above the ground. Light is refracted as it passes through the cool air and onto the hot air sheet (bent). A coating of very warm air near the earth bends the light from the sky almost into a U-shaped bend.
Can something have energy even if it's not moving?
All moving objects have kinetic energy. When an object is in motion, it changes its position by moving in a direction: up, down, forward, or backward. ... Potential energy is stored energy. Even when an object is sitting still, it has energy stored inside that can be turned into kinetic energy (motion).
Does a book at rest have energy?
A World Civilization book at rest on the top shelf of a locker possesses mechanical energy due to its vertical position above the ground (gravitational potential energy).
Does a book lying on a table have energy?
The book lying on a desk has potential energy; the book falling off a desk has kinetic energy.
The pressure law states that pressure is directly proportional to temperature.
p=kt where p is pressure, k is a constant, and t is temperature.
p=kt -- substitute
50000=k*300000
k=1/6
p=1/6*360000
p=60000 -- in pa not kpa
The pressure is 60kpa
Answer:
The mass of the beam is 0.074 kg
Explanation:
Given;
length of the uniform bar, = 1m = 100 cm
Set up this system with the given mass and support;
0-----------------33cm-----------------------------------100cm
↓ Δ ↓
0.15kg m
Where;
m is mass of the uniform bar
Apply the principle of moment to determine the value of "m"
sum of anticlockwise moment = sum of clockwise moment
0.15kg(33 - 0) = m(100 - 33)
0.15(33) = m(67)

Therefore, the mass of the beam is 0.074 kg