1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
10

A bar of length L = 8 ft and midpoint D is falling so that, when θ = 27°, ∣∣v→D∣∣=18.5 ft/s , and the vertical acceleration of p

oint D is 23 ft/s2 downward. At this instant, compute the angular acceleration of the bar and the acceleration of point B.

Physics
2 answers:
user100 [1]3 years ago
7 0

Answer:

a) the angular acceleration of the bar AB is \alpha_{AB} = - 29.31 \ k'  \   rad/s^2

b) the acceleration a_B of point B = -218.6 \ i \ ft/s^2

Explanation:

The sketched diagram below shows an illustration of what the question comprises of:

Now, from the diagram ; we can deduce the following relations;

v_{B/A} = L (sin \theta \ i' - cos \theta \ j')

v_{D/A} = \frac{L}{2} (sin \theta \ i' - cos \theta \ j')

Taking point H as the instantaneous center of rotation of line HD. The distance between H and D is represented as:

d_{HD} = \frac{L}{2}

The angular velocity of the bar AB from the diagram can be determined by using the relation:

\omega__{AB}} = \frac{V_D}{d_{HD}}

where:

d_{HD} = \frac{L}{2}

and

V_D = velocity of point D = 18.5 ft/s

L = length of the bar = 8 ft

Then;

\omega__{AB}} = \frac{18.5}{4}

\omega__{AB}} = 4.625 \  rad/s

Using vector approach to acceleration analysis;

Acceleration about point B can be expressed as;

a_B = ( \alpha_{AB} Lcos \theta - \omega^2 _{AB}L sin \theta ) i + (a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta )j ---equation(1)

The y - component of a_B ⇒ a__{By}} = a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta

where; a__{By}} = 0

Then

0 =  a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta

Making a_A the subject of the formula; we have:

a_A =  - ( \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta)         -------    equation (2)

Acceleration about point D is expressed as follows:

a_D = ( \alpha_{AB} Lcos \theta - \omega^2 _{AB}L sin \theta ) i' + (a_A + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta )j'

The y - component of a_D ⇒ a__{Dy}} = a_A + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta

Replacing - 23 ft/s² for a_y; we have:

- 23 ft/s^2 \ = a_A + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta

Also; replacing equation (2) for a_A in the above expression; we have

- 23 ft/s^2 \ =  - ( \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta) + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta

- 23 ft/s^2 \ =  - \alpha_{AB} \frac{L}{2}sin \theta -  \omega ^2 _{AB} \frac{L}{2}cos \theta

Making \alpha _{AB} the subject of the formula ; we have:

\alpha_{AB} = \frac{46 \ ft/s^2}{Lsin\theta } - \omega^2 _{AB} cot \theta

Replacing 8 ft for L;   27° for θ; 4.625 rad/s for \omega __{AB}

Then;

\alpha_{AB} = \frac{46 \ ft/s^2}{8 sin27^0 } - (4.625^2)(  cot 27)

\alpha_{AB} =  12.67 - 41.98

\alpha_{AB} = - 29.31 rad/s^2

\alpha_{AB} = - 29.31 \ k'  \   rad/s^2

Thus, the angular acceleration of the bar AB is \alpha_{AB} = - 29.31 \ k'  \   rad/s^2

b)

To calculate  the acceleration of point B using equation (1); we have:

a_B = ( \alpha_{AB} Lcos \theta - \omega^2 _{AB}L sin \theta ) i + (a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta )j

Replacing

\alpha_{AB} = - 29.31 rad/s^2

L = 8 ft

θ = 27°

\omega __{AB} =  4.625 rad/s

a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta = y = 0

Then;

a_B = [-29.31(8)cos 27^0- (4.625^2)(8sin27^0)]   i +0j

a_B = -218.6 \ i \ ft/s^2

Thus, the acceleration a_B of point B = -218.6 \ i \ ft/s^2

777dan777 [17]3 years ago
6 0

Answer:

alpha=53.56rad/s

a=5784rad/s^2

Explanation:

First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

v=v_0+at\\\\t=\frac{v}{a}=\frac{(23\frac{ft}{s})}{32.17\frac{ft}{s^2}}=0.71s

Now, we can calculate the angular acceleration  (w0=0rad/s)

\theta=\omega_0t +\frac{1}{2}\alpha t^2\\\alpha=\frac{2\theta}{t^2}

\alpha=\frac{27}{(0.71s)^2}=53.56\frac{rad}{s^2}

with this value we can compute the angular velocity

\omega=\omega_0+\alpha t\\\omega = (53.56\frac{rad}{s^2})(0.71s)=38.02\frac{rad}{s}

and the tangential velocity of point B, and then the acceleration of point B:

v_t=\omega r=(38.02\frac{rad}{s})(4)=152.11\frac{ft}{s}\\a_t=\frac{v_t^2}{r}=\frac{(152.11\frac{ft}{s})^2}{4ft}=5784\frac{rad}{s^2}

hope this helps!!

You might be interested in
a ball is dropped and falls with an acceleration of 9.8m/s^2 downward. it hits the ground with a velocity of 49m/s downward. how
yaroslaw [1]
The answer below...........

8 0
3 years ago
What terms are needed to completely describe velocity?
kotegsom [21]
In order to completely describe a velocity,
you need a speed and a direction.
4 0
3 years ago
How many protons are in this Atom if it has a balanced charge?
Dmitry [639]

Answer:

the answer is A

Explanation:

6 0
3 years ago
Uest<br>1. State Newton's law of cooling.​
garik1379 [7]

Answer:

Newton's law of cooling states that the rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its surroundings. The law is frequently qualified to include the condition that the temperature difference is small and the nature of heat transfer mechanism remains the same. As such, it is equivalent to a statement that the heat transfer coefficient, which mediates between heat losses and temperature differences, is a constant. This condition is generally met in heat conduction (where it is guaranteed by Fourier's law) as the thermal conductivity of most materials is only weakly dependent on temperature. In convective heat transfer, Newton's Law is followed for forced air or pumped fluid cooling, where the properties of the fluid do not vary strongly with temperature, but it is only approximately true for buoyancy-driven convection, where the velocity of the flow increases with temperature difference. Finally, in the case of heat transfer by thermal radiation, Newton's law of cooling holds only for very small temperature differences.

When stated in terms of temperature differences, Newton's law (with several further simplifying assumptions, such as a low Biot number and a temperature-independent heat capacity) results in a simple differential equation expressing temperature-difference as a function of time. The solution to that equation describes an exponential decrease of temperature-difference over time. This characteristic decay of the temperature-difference is also associated with Newton's law of cooling

6 0
3 years ago
Explain 5 things that could cause an incorrect mass when using the triple bean balance?
ludmilkaskok [199]
If the scale is not "zeroed". If you do not use grams (g) to lable your products. If you do not unlock the balance. [that's about all I got doll]
5 0
3 years ago
Read 2 more answers
Other questions:
  • How many moons does Venus have?
    11·2 answers
  • What are the magnitude and direction of the force the pitcher exerts on the ball? (enter your magnitude to at least one decimal
    15·2 answers
  • What is the acceleration of a 0.30-kg volleyball when a player uses a force of 42 N to spike the ball?
    10·1 answer
  • Definition of magnitude
    5·2 answers
  • Most of the energy we use today comes from renewable sources/<br> a. True<br> b. False
    9·2 answers
  • If you want to study how energetic waves affect matter, you should study waves with a _______.
    14·1 answer
  • If an elephant has a net force of 10000 N downward while experiencing an upward force of 9000 N from air resistance, what is the
    5·1 answer
  • URGENT
    15·1 answer
  • An 5kg object is released from rest near the surface of a planet. The vertical position of the object as a function of time is s
    15·1 answer
  • Object A represents fixed negatively charged particle and Object B represents fixed. positively-charged particle. Object ( shows
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!