1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
3 years ago
10

A bar of length L = 8 ft and midpoint D is falling so that, when θ = 27°, ∣∣v→D∣∣=18.5 ft/s , and the vertical acceleration of p

oint D is 23 ft/s2 downward. At this instant, compute the angular acceleration of the bar and the acceleration of point B.

Physics
2 answers:
user100 [1]3 years ago
7 0

Answer:

a) the angular acceleration of the bar AB is \alpha_{AB} = - 29.31 \ k'  \   rad/s^2

b) the acceleration a_B of point B = -218.6 \ i \ ft/s^2

Explanation:

The sketched diagram below shows an illustration of what the question comprises of:

Now, from the diagram ; we can deduce the following relations;

v_{B/A} = L (sin \theta \ i' - cos \theta \ j')

v_{D/A} = \frac{L}{2} (sin \theta \ i' - cos \theta \ j')

Taking point H as the instantaneous center of rotation of line HD. The distance between H and D is represented as:

d_{HD} = \frac{L}{2}

The angular velocity of the bar AB from the diagram can be determined by using the relation:

\omega__{AB}} = \frac{V_D}{d_{HD}}

where:

d_{HD} = \frac{L}{2}

and

V_D = velocity of point D = 18.5 ft/s

L = length of the bar = 8 ft

Then;

\omega__{AB}} = \frac{18.5}{4}

\omega__{AB}} = 4.625 \  rad/s

Using vector approach to acceleration analysis;

Acceleration about point B can be expressed as;

a_B = ( \alpha_{AB} Lcos \theta - \omega^2 _{AB}L sin \theta ) i + (a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta )j ---equation(1)

The y - component of a_B ⇒ a__{By}} = a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta

where; a__{By}} = 0

Then

0 =  a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta

Making a_A the subject of the formula; we have:

a_A =  - ( \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta)         -------    equation (2)

Acceleration about point D is expressed as follows:

a_D = ( \alpha_{AB} Lcos \theta - \omega^2 _{AB}L sin \theta ) i' + (a_A + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta )j'

The y - component of a_D ⇒ a__{Dy}} = a_A + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta

Replacing - 23 ft/s² for a_y; we have:

- 23 ft/s^2 \ = a_A + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta

Also; replacing equation (2) for a_A in the above expression; we have

- 23 ft/s^2 \ =  - ( \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta) + \alpha_{AB} \frac{L}{2}sin \theta + \omega ^2 _{AB} \frac{L}{2}cos \theta

- 23 ft/s^2 \ =  - \alpha_{AB} \frac{L}{2}sin \theta -  \omega ^2 _{AB} \frac{L}{2}cos \theta

Making \alpha _{AB} the subject of the formula ; we have:

\alpha_{AB} = \frac{46 \ ft/s^2}{Lsin\theta } - \omega^2 _{AB} cot \theta

Replacing 8 ft for L;   27° for θ; 4.625 rad/s for \omega __{AB}

Then;

\alpha_{AB} = \frac{46 \ ft/s^2}{8 sin27^0 } - (4.625^2)(  cot 27)

\alpha_{AB} =  12.67 - 41.98

\alpha_{AB} = - 29.31 rad/s^2

\alpha_{AB} = - 29.31 \ k'  \   rad/s^2

Thus, the angular acceleration of the bar AB is \alpha_{AB} = - 29.31 \ k'  \   rad/s^2

b)

To calculate  the acceleration of point B using equation (1); we have:

a_B = ( \alpha_{AB} Lcos \theta - \omega^2 _{AB}L sin \theta ) i + (a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta )j

Replacing

\alpha_{AB} = - 29.31 rad/s^2

L = 8 ft

θ = 27°

\omega __{AB} =  4.625 rad/s

a_A + \alpha_{AB} Lsin \theta + \omega ^2 _{AB} Lcos \theta = y = 0

Then;

a_B = [-29.31(8)cos 27^0- (4.625^2)(8sin27^0)]   i +0j

a_B = -218.6 \ i \ ft/s^2

Thus, the acceleration a_B of point B = -218.6 \ i \ ft/s^2

777dan777 [17]3 years ago
6 0

Answer:

alpha=53.56rad/s

a=5784rad/s^2

Explanation:

First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

v=v_0+at\\\\t=\frac{v}{a}=\frac{(23\frac{ft}{s})}{32.17\frac{ft}{s^2}}=0.71s

Now, we can calculate the angular acceleration  (w0=0rad/s)

\theta=\omega_0t +\frac{1}{2}\alpha t^2\\\alpha=\frac{2\theta}{t^2}

\alpha=\frac{27}{(0.71s)^2}=53.56\frac{rad}{s^2}

with this value we can compute the angular velocity

\omega=\omega_0+\alpha t\\\omega = (53.56\frac{rad}{s^2})(0.71s)=38.02\frac{rad}{s}

and the tangential velocity of point B, and then the acceleration of point B:

v_t=\omega r=(38.02\frac{rad}{s})(4)=152.11\frac{ft}{s}\\a_t=\frac{v_t^2}{r}=\frac{(152.11\frac{ft}{s})^2}{4ft}=5784\frac{rad}{s^2}

hope this helps!!

You might be interested in
a 100 kg gymnast comes to a stop after tumbling. her feet do -5000J of net work to stop her. Use the work-kinetic energy theorem
VikaD [51]
W=ΔKE , W=-5000j
KEinitial=(1/2)mv² , KEfinal=0j 
ΔKE=-(1/2)mv²
-5000=-(1/2)(100kg)v²
v=10 m/s

6 0
3 years ago
Read 2 more answers
A ball is dropped from a window and takes two seconds to reach the ground .it starts from rest and reaches a final speed of 20m/
Akimi4 [234]
The ball can't reach the speed of 20 m/s in two seconds, unless you THROW it down from the window with a little bit of initial speed. If you just drop it, then the highest speed it can have after two seconds is 19.6 m/s .

If an object starts from rest and its speed after 2 seconds is 20 m/s, then its acceleration is 20/2 = 10 m/s^2 .

(Gravity on Earth is only 9.8 m/s^2.)
3 0
3 years ago
Where can radiation be found in nature and how is it affected
Murljashka [212]
The sun is a clear example of objects releasing radiation in nature
8 0
1 year ago
During a particular time interval, the displacement of an object is equal to zero. Must the distance traveled by this object als
Gnom [1K]

Answer: No, we can have a displacement equal to 0 while the distance traveled is different than zero.

Explanation:

Ok, let's write the definitions:

Displacement: The displacement is equal to the difference between the final position and the initial position.

Distance traveled: Total distance that you moved.

So, for example, if at t = 0s, you are in your house, then you go to the store, and then you return to your house, we have:

The displacement is equal to zero, because the initial position is your house and the final position is also your house, so the displacement is zero.

But the distance traveled is not zero, because you went from you traveled the distance from your house to the store two times.

So no, we can have a displacement equal to zero, but a distance traveled different than zero.

3 0
3 years ago
If a planet's orbital speed is 20 km/s when it's at its average distance from the sun which is most likely orbital speed when it
Alona [7]

Answer:25km/s

Explanation:

8 0
2 years ago
Other questions:
  • Consider a car travelling at 60 km/hr. If the radius of a tire is 25 cm, calculate the angular speed of a point on the outer edg
    14·1 answer
  • What does an atomic nucleus give off a particle?
    5·1 answer
  • What is necessary for a substance to be a conductor of electricity?
    6·1 answer
  • What is the direction of the resulting vector when a vector of 25 units south East
    6·1 answer
  • Sound waves in air are a series of
    6·1 answer
  • Three uses of laser technology
    7·1 answer
  • A cannon, elevated at 40∘ is fired at a wall 300 m away on level ground, as shown in the figure below. The initial speed of the
    6·2 answers
  • Which use combustion to release thermal energy?
    14·2 answers
  • The speed of a wave is 70 m/s. If the wavelength of the wave is 0.4
    11·2 answers
  • PLEASE SOMEONE HELP ME ILL GIVE THE PERSON BRAINLIEST
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!