Answer:
MIS HIEVOSTES bbbbbbbbbbbb MIS HUEVOTES
Answer:
1709.07 ft^3/s
Explanation:
Annual peak streamflow = Log10(Q [ft^3/s] )
mean = 1.835
standard deviation = 0.65
Probability of levee been overtopped in the next 15 years = 1/5
<u>Determine the design flow ins ft^3/s </u>
P₁₅ = 1 - ( q )^15 = 1 - ( 1 - 1/T )^15 = 0.2
∴ T = 67.72 years
Q₁₅ = 1 - 0.2 = 0.8
Applying Lognormal distribution : Zt = mean + ( K₂ * std ) --- ( 1 )
K₂ = 2.054 + ( 67.72 - 50 ) / ( 100 - 50 ) * ( 2.326 - 2.054 )
= 2.1504
back to equation 1
Zt = 1.835 + ( 2.1504 * 0.65 ) = 3.23276
hence:
Log₁₀ ( Qt(ft^3/s) ) = Zt = 3.23276
hence ; Qt = 10^3.23276
= 1709.07 ft^3/s
Answer:
kindly check the drawing of the FBD of the beam with reactions at A & B. A is a pin, B is a roller in the attached picture.
Explanation:
Without further ado, let's dive straight into the solution to the question above. From the diagram of the FBD of the beam with reactions at A & B it can be shown that the reaction moment is anticlockwise while the moment is clockwise.
The system is at equilibrium and the it does not matter where you place the couple (pure) moment.
The distance from A to C can either be equal or not. If AY = 2.15 kN and M = 25.8. Then, the distance between A and B = 25.8/2.15 = 12m.