Answer:
The answer is B. Van der Waals forces are weaker than ionic and covalent bonds.
Explanation:
In general, if we arrange these molecular forces from the strongest to weakest, it would be like this:
Covalent bonds > Ionic bonds > Hydrogen bonds > Dipole-Dipole Interactions > Van der Waals forces
Covalent bonds are known to have the strongest and most stable bonds since they go deep and into the inter-molecular state. A diamond is an example of a compound with this characteristic bond.
Ionic bonds are the next strongest molecular bond following covalent bonds. This is due to the protons and electrons causing an electro-static force which results to the strong bonds. An example would be Sodium Chloride (NaCl), which when separated is Na⁺ and Cl⁻.
Van der Waals forces, also known as Dispersion forces, are the weakest type of molecular bonds. They are only formed through residual molecular attractions when molecules pass by each other. It doesn't even last long due to the uneven electron dispersion. It can be made stronger by adding more electrons in the molecule. This kind of molecular bonds appear in non-polar molecules such as carbon dioxide.
HOPE THIS HELPS!!!!!!!!!!!!!!
///////////////////////////////////////////////////////////////////////////////////////////
Can you provide a picture
The model that should show the corresct representation of xenon gas is one in which the gas molecules are isolated and monoatomic.
<h3>What is a noble gas?</h3>
A noble gas is a member of group 18 of the periodic table. Noble gases are known not to interact with each other and occur as monoatomic particles.
The images are not shown here hence the question is incomplete. However, we do know that any of the models that show individual monoatomic particles is a representation of xenon gas.
Learn more about noble gas: brainly.com/question/2094768
Answer: i would say D or the last one.
Explanation: According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants. The law of conservation of mass is useful for a number of calculations and can be used to solve for unknown masses, such the amount of gas consumed or produced during a reaction.
Hope this helps :) Can u plz mark me branliest
On complete conversion (100% yield) 9.75 g of ethyl butyrate will be produced. Below is the solution.....