<u>Answer</u>
So this is the reaction that happens.
<span>C4H10 + O2 = CO2 + H2O </span>
<span>Balanced, it is </span>
<span>2C4H10 + 8O2 = 8CO2 + 10H2O </span>
<span>Given 1 kg or 1000 g of butane, use stoichiometry aka factor labeling aka conversions and mole ratios to get to grams of oxygen. </span>
<span>I'll do an example. Let's form water. Hydrogen is diatomic too. </span>
<span>2H2 + O2 = 2H2O </span>
<span>Given 1000 g of Hydrogen, I need to know how many grams of oxygen to use. To convert grams to moles,
I know that 1 mol of H2 equals 2.02 g. Then, for every mole of O2, there are 2 moles of H2. Then converting moles of O2 to grams, I know that one mole of it equals 32 grams. </span>
<span>[1000 g H2] x [1 mol H2/2.02 g H2] x [1 mol O2/2 mol H2] x [32 g O2/1 mol O2] </span>
<span>My answer would be 7.9 kg </span>
Answer:B
Explanation: Because you know how the is potential energy and then there is kinetic energy yeah those have to do with movement like a roller coaster
The given question is incomplete. The complete question is as follows.
Sodium sulfate is slowly added to a solution containing 0.0500 M
and 0.0390 M
. What will be the concentration of
(aq) when
begins to precipitate? What percentage of the
can be separated from the Ag(aq) by selective precipitation?
Explanation:
The given reaction is as follows.

= 0.0390 M
When
precipitates then expression for
will be as follows.
![K_{sp} = [Ag^{+}]^{2}[SO^{2-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5E%7B2%7D%5BSO%5E%7B2-%7D_%7B4%7D%5D)
![1.20 \times 10^{-5} = (0.0390)^{2} \times [SO^{2-}_{4}]](https://tex.z-dn.net/?f=1.20%20%5Ctimes%2010%5E%7B-5%7D%20%3D%20%280.0390%29%5E%7B2%7D%20%5Ctimes%20%5BSO%5E%7B2-%7D_%7B4%7D%5D)
= 0.00788 M
Now, equation for dissociation of calcium sulfate is as follows.

![K_{sp} = [Ca^{2+}][SO^{2-}_{4}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%5BSO%5E%7B2-%7D_%7B4%7D%5D)
![4.93 \times 10^{-5} = [Ca^{2+}] \times 0.00788](https://tex.z-dn.net/?f=4.93%20%5Ctimes%2010%5E%7B-5%7D%20%3D%20%5BCa%5E%7B2%2B%7D%5D%20%5Ctimes%200.00788)
= 0.00625 M
Now, we will calculate the percentage of
remaining in the solution as follows.

= 12.5%
And, the percentage of
that can be separated is as follows.
100 - 12.5
= 87.5%
Thus, we can conclude that 87.5% will be the concentration of
when
begins to precipitate.
Answer:
Approximately 13.4 meters per second (m/s)
Explanation:
We can divide the distance by 60 seconds to find the trains average rate of speed.
803.98 / 60 ≈ 13.4
Best of Luck!
Answer is: the volume of an irregular object is 4,00 ml.
<span>Volume is the amount of space the object occupies and can be finded immersing it in water in a container with volume markings and than see how much the level of the container changes (goes up).
</span>V(irregular object) = V(final volume) - V(initial volume).
V(irregular object) = 7,50 ml - 3,50 ml.
V(irregular object) = 4,00 ml.