The state of matter depends upon how close the individual particles are together
1).B
2.)C
i think the reason was because of the pangea theory that continents where once one big continent and over time it began to split
Answer:
5.33kg
Explanation:
Given parameters:
Velocity of eagle = 15m/s
Kinetic energy of the eagle = 600J
Unknown:
Mass of the eagle = ?
Solution:
The kinetic energy of any body is the energy due to the motion of a body. There are different forms of kinetic energy some of which are thermal, mechanical, electrical energy.
The formula of kinetic energy is given as;
Kinetic energy =
m v²
where m is the mass, V is the velocity
substitute the parameters in the equation;
600 =
x m x 15²
225m = 1200
m =
= 5.33kg
Answer:
distance is 13 m for 100 dB
distance is 409 km for 10 dB
Explanation:
Given data
distance r = 2.30 m
source β = 115 dB
to find out
distance at sound level 100 dB and 10 dB
solution
first we calculate here power and intensity and with this power and intensity we will find distance
we know sound level β = 10 log(I/
) ......................a
put here value (I/
) = 10^−12 W/m² and β = 115
115 = 10 log(I/10^−12)
so
I = 0.316228 W/m²
and we know power = intensity × 4π r² ...............b
power = 0.316228 × 4π (2.30)²
power = 21.021604 W
we know at 100 dB intensity is 0.01 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 0.01 × 4π r²
so by solving r
r = 12.933855 m = 13 m
distance is 13 m
and
at 10 dB intensity is 1 × 10^–11 W/m²
so by equation b
power = intensity × 4π r²
21.021604 = 1 × 10^–11 × 4π r²
by solving r we get
r = 409004.412465 m = 409 km
Complete Question
A parallel plate capacitor creates a uniform electric field of 5 x 10^4 N/C and its plates are separated by 2 x 10^{-3}'m. A proton is placed at rest next to the positive plate and then released and moves toward the negative plate. When the proton arrives at the negative plate, what is its speed?
Answer:

Explanation:
From the question we are told that:
Electric field 
Distance 
At negative plate
Generally the equation for Velocity is mathematically given by

Therefore



