If a star is moving towards Earth, shift towards the blue end of the spectrum, this is called blue shift. If the star is moving away from Earth the light from that star will be red and is called red shift .
The faster a star moves towards the earth, the more its light is shifted to higher frequencies. In contrast, if a star is moving away from the earth, its light is shifted to lower frequencies on the color spectrum
if a star is moving towards Earth, it appears to emit light that is shorter in wavelength compared to a source of light that isn't moving. Because shorter wavelengths correspond to a shift towards the blue end of the spectrum, this is called blue shift.
If the star is moving away from Earth, its light will lose energy to reach Earth, therefore the light from that star will be red and is called red shift
learn more about blue shift :
brainly.com/question/5368237?referrer=searchResults
#SPJ4
It's not possible to answer the question exactly the way it's written.
That's because we don't know anything about the direction they
drive at any time during the trip.
You see, "velocity" is not just a word that you use for 'speed' when
you want to sound smart and technical, like this question is doing.
"Velocity" is a quantity that's made up of speed AND THE DIRECTION
of the motion. If you don't know the direction of the motion, then you
CAN'T tell the velocity, only the speed.
Here are the average speeds that Lori's family drove on each leg
of their trip:
Speed = (distance covered) / (time to cover the distance) .
Leg-A:
Speed = 15km/10min = 1.5 km/min
Leg-B:
Speed = 20km/15min = (1 and 1/3) km/min
Leg-C
Speed = 24km/12min = 2 km/min
Leg-D:
Speed = 36km/9min = 4 km/min
Leg-E:
Speed = 14km/14min = 1 km/min
From lowest speed to highest speed, they line up like this:
[Leg-E] ==> [Leg-B] ==> [Leg-A] ==> [Leg-C] ==> [Leg-D]
1.0 . . . . . . . . 1.3 . . . . . . . 1.5 . . . . . . . 2.0 . . . . . . . 4.0 . . . . km/minute
Whoever drove Leg-D should have been roundly chastised
and then abandoned by the rest of the family. 36 km in 9 minutes
(4 km per minute) is just about 149 miles per hour !
Answer:
The density of the mixture is 0.55kg/m^3
Explanation:
P = 1bar = 100kN/m^2, T = 0°C = 273K, n = 0.4+0.6 = 1mole
PV = nRT
V = nRT/P = 1×8.314×273/100 = 22.70m^3
Mass of N2 = 0.4×28 = 11.2kg
Mass of H2 = 0.6×2 = 1.2kg
Mass of mixture = 11.2 + 1.2 = 12.4kg
Density of mixture = mass/volume = 12.4/22.7 = 0.55kg/m^3
Answer:
Bob provided the greatest impulse.
Explanation:
Given:
Arnold exerts force = 300 N for 3 seconds
Bob exerts force = 500 N for 2 seconds
Cecil exerts force = 200 N for 4 seconds.
Find:
Highest impulse
Computation:
Impulse = Force × TIme
Arnold provides impulse = 300 N × 3 seconds = 900 N/s
Bob provides impulse = 500 N × 2 seconds = 1,000 N/s
Cecil provides impulse = 200 N × 4 seconds = 800 N/s
Therefore, Bob provided the greatest impulse.