the answer is ( True ) .
the current is the same in series circuits .
Answer:
13.1
Explanation:
that's what I'm gonna go with, but u can research more
To answer, evaluate the power of 10 in the given choices. If it is positve, move the decimal n places to the right. If it is negative, move the decimal n corresponding places to the left. From all the choices given, only the choices D, E, and F will give us the correct answer.
Answer:
Kinetic energy is 1425.11 J.
Explanation:
Given:
Mass of the wrench is, 
Height of fall is, 
Force of resistance is, 
Now, the total energy at the top is equal to the potential energy of the wrench at the top since the kinetic energy at the top is 0.
Now, potential energy at the top is given as:

Now, the potential energy at the top is converted to kinetic energy at the bottom and some energy is wasted in overcoming the resistance force by air.
Potential Energy = Kinetic energy + Energy to overcome resistance.
⇒ Kinetic energy = Potential Energy - Energy to overcome resistance.
Energy to overcome resistance force is the work done by the wrench against the resistance force and is given as:

Therefore, Kinetic energy at the bottom is given as:

Hence, the kinetic energy of the wrench be when it hits the water is 1425.11 J.
Answer:
The least uncertainty in the momentum component px is 1 × 10⁻²³ kg.m.s⁻¹.
Explanation:
According to Heisenberg's uncertainty principle, the uncertainty in the position of an electron (σx) and the uncertainty in its linear momentum (σpx) are complementary variables and are related through the following expression.
σx . σpx ≥ h/4π
where,
h is the Planck´s constant
If σx = 5 × 10⁻¹²m,
5 × 10⁻¹²m . σpx ≥ 6.63 × 10⁻³⁴ kg.m².s⁻¹/4π
σpx ≥ 1 × 10⁻²³ kg.m.s⁻¹