Answer:
3.91 moles of Neon
Explanation:
According to Avogadro's Law, same volume of any gas at standard temperature (273.15 K or O °C) and pressure (1 atm) will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = <u>???</u>
V = Volume = 87.6 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 87.6 L) ÷ 22.4 L
= 3.91 moles
<h3>2nd Method:</h3>
Assuming that the gas is acting ideally, hence, applying ideal gas equation.
P V = n R T ∴ R = 0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹
Solving for n,
n = P V / R T
Putting values,
n = (1 atm × 87.6 L)/(0.08205 L⋅atm⋅K⁻¹⋅mol⁻¹ × 273.15K)
n = 3.91 moles
Result:
87.6 L of Neon gas will contain 3.91 moles at standard temperature and pressure.
Answer:
53.1 mL
Explanation:
Let's assume an ideal gas, and at the Standard Temperature and Pressure are equal to 273 K and 101.325 kPa.
For the ideal gas law:
P1*V1/T1 = P2*V2/T2
Where P is the pressure, V is the volume, T is temperature, 1 is the initial state and 2 the final state.
At the eudiometer, there is a mixture between the gas and the water vapor, thus, the total pressure is the sum of the partial pressure of the components. The pressure of the gas is:
P1 = 92.5 - 2.8 = 89.7 kPa
T1 = 23°C + 273 = 296 K
89.7*65/296 = 101.325*V2/273
101.325V2 = 5377.45
V2 = 53.1 mL
Use the question marck Moles of CO2
The the giving = 0.624 mol O2
Find the CF faction = 1 mole= 32.00 of O2
O= 2x16.00= 32.00amu ( writte this in the cf fraction)
SET UP THE CHART
Always start with the giving
0.624 mol O2 / 1mol of CO2
___________ / _____________ = Cancel the queal ( O2)
/ 32.00c O2
/
/
Multiply the top and divide by the bottom
0.624 mol CO x 1mol CO2 = 0.624 divide by 32.00 O2 =0.0195
You should look at the giving number ( how many num u gor ever there)
Ur answer should have the same # as ur givin so
= 0.0195
= .0195 mol of CO2
Protons in science is positive
Answer:
H+(aq) + OH-(aq) → H2O(l)
Explanation:
Step 1: Data given
nitrious acid = HNO3
sodium hydroxide = NaOH
Step 2: The unbalance equation
HNO3(aq) + NaOH(aq) →NaNO3(aq) + H2O(l)
The net ionic equation, for which spectator ions are omitted - remember that spectator ions are those ions located on both sides of the equation - will , after canceling those spectator ions in both side (Ba^2+ and Br-), look like this:
H+(aq) + NO3-(aq) + Na+(aq) + OH-(aq) →Na+(aq) +NO3(aq) + H2O(l)
H+(aq) + OH-(aq) → H2O(l)