Amount Remaining Years #half lives
100g 0 0
50 g 100 1
25g 200 2
Answer:
The common ion will be di-positive ion.
Explanation:
The ionization energy is defined as the amount of energy needed for removal of most loosely bound electron from an isolated atom in gaseous state.
The low ionization energy shows that the atom is able to give electron easily as after losing electron it may attain noble gas configuration or half filled stability.
Here the first and second ionization energy, both are low suggesting that the element is ready to give two electrons easily to form a di-positive ion however the third ionization energy is high which shows that it will not form tri-positive ion commonly.
Ionic bonds hold NaCl together
The molar concentration is 1.11M.
<h3>What is molar concentration?</h3>
The phrase "molar concentration" (also known as "molarity," "amount concentration," or "substance concentration") refers to the amount of a substance per unit volume of solution and is used to describe the concentration of a chemical species, specifically a solute, in a solution. The most frequent measure of molarity in chemistry is the number of moles per liter, denoted by the unit symbol mol/L or mol/dm3 in SI units. A solution with a concentration of 1 mol/L is referred to as 1 molar, or 1 M.
<h3>Given : </h3>
Volume of the solution = 2L
Mass of glucose given = 200g
Concentration of glucose= ?
<h3>Formula use: </h3>
Molarity = no. of moles of solute / volume of the solution (L)
Moles of solute = given mass of solute / molar mass of the solute
<h3>Solution: </h3>
No. of moles of solute( glucose ) = 200 / 180 = 1.11 moles'
Molarity = 1.11 / 2 = 0.5555 mol L ^(-1)
Therefore, the molar concentration of glucose in the solution = 0.555 mol L ^(-1)
To learn more about molar concentration :
brainly.com/question/15532279
#SPJ4
Answer:
a) yes, it was an hydrate
b) the number of waters of hydration, x = 6
Explanation:
a) yes it was an hydrate because the mass decreased after the process of dehydration which means removal of water thus some water molecules were present in the sample.
b) NiCl2. xH2O
mass if dehydrated NiCl2 = 2.3921 grams
mass of water in the hydrated sample = mass of hydrated - mass of dehydrated = 4.3872 - 2.3921 = 1.9951 g which represent the mass of water that was present in the hydrated sample.
NiCl2.xH2O
mole of dehydrated NiCl2 = m/Mm = 2.3921/129.5994 = 0.01846 mole
mole of water = m/Mm = 1.9951/18.02 = 0.11072 mole
Divide both by the smallest number of mole (which is for NiCl2) to find the coefficient of each
for NiCl2 = 0.01846/0.01846 = 1
for H2O = 0.11072/0.01846 = 5.9976 = 6
thus the hydrated sample was NiCl2. 6H2O