Answer:
The charge on the third object is − 21.7nC
Explanation:
From Gauss's Law
Φ = Q/ε₀
where;
Φ is the total electric flux through the shell = − 533 N⋅m²/C
Q is the total charge Q in the shell = ?
ε₀ is the permittivity of free space = 8.85 x 10⁻¹²
From this equation; Φ = Q/ε₀
Q = Φ * ε₀ = − 533 * 8.85 x 10⁻¹²
Q = −4.7 X 10⁻⁹ C = -4.7nC
Q = q₁ + q₂ + q₃
− 4.7nC = − 14.0 nC + 31.0 nC + q₃
− 4.7nC − 17nC = q₃
− 21.7nC = q₃
Therefore, the charge on the third object is − 21.7nC
Answer:
a)Velocity of car =v=16 m/s
b)Force against the track at point B=1.15*
N
Explanation:
Given mass of roller coaster=m=350 kg
Position of A=Ha=25 m
Position of B=Hb=12 m
Net potential energy=mg(ha-hb)
Net potential energy=(350)(9.80)(25-12)
Net potential energy=44590 J
Using energy conservation
net kinetic energy=net potential energy
(1/2)mv^2=mg(ha-hb)
m=350
velocity=v=16 m/s
b)There two force acting,centripetal force upward and gravity downward.
Thus net force acting will be
Net force=(mv^2/r)-mg
Net force=14933.33-3430
Net force=1.15*
N
Answer:

Explanation:
Not considering any type of losses in the transformer, the input power in the primary is equal to the output power in the secondary:

So:

Where:

Solving for 

Replacing the data provided:

Answer:
professional communication style is expected to be formal while the casual is informal.
Explanation:
1 Ampere
Explanation:
1/R = 1/8 + 1/10 + 1/12
1/R = (30 + 24 + 20) / 240
1/R = 74 / 240
R = 240 / 37
R = 120/37 Ohms
We know that,
V = IR
I = V/R
I = 12 / (120/37)
I = 12 × 37/120
I = 37/10
I = 3.7 A
Now,
The current in 12 ohm resistor →
= 1 A
∴ The current in 12 ohm resistor is 1 ampere