Answer:
h’ = 1/9 h
Explanation:
This exercise must be solved in parts:
* Let's start by finding the speed of sphere B at the lowest point, let's use the concepts of conservation of energy
starting point. Higher
Em₀ = U = m g h
final point. Lower, just before the crash
Em_f = K = ½ m
energy is conserved
Em₀ = Em_f
m g h = ½ m v²
v_b =
* Now let's analyze the collision of the two spheres. We form a system formed by the two spheres, therefore the forces during the collision are internal and the moment is conserved
initial instant. Just before the crash
p₀ = 2m 0 + m v_b
final instant. Right after the crash
p_f = (2m + m) v
the moment is preserved
p₀ = p_f
m v_b = 3m v
v = v_b / 3
v = ⅓ 
* finally we analyze the movement after the crash. Let's use the conservation of energy to the system formed by the two spheres stuck together
Starting point. Lower
Em₀ = K = ½ 3m v²
Final point. Higher
Em_f = U = (3m) g h'
Em₀ = Em_f
½ 3m v² = 3m g h’
we substitute
h’=
h’ =
h’ = 1/9 h
There is no SI "base unit" of density.
(Any unit of mass) divided by (any unit of volume) is
a valid unit of density.
The units of density that are seen most often are
(gram per cm³) and (kgm per meter³) .
Electrical forces travel far through the universe
Answer:

south of east
Explanation:
= 3 m/s
=
north of east
= 6 m/s
=
south of east =
north of east
x and y component of 


x and y component of 



Magnitude

Direction

The magnitude of the change in velocity vector is
and the direction is
south of east.