Answer:
2dQ²/2εA = 2U₀
Explanation:
The energy stored in the ideal parallel plate capacitor U = Q²/2C. For a parallel plate capacitor, C = εA/d where A is the area between the plates and D is the distance between them. So
U = Q²/2C = Q²/2εA/d = dQ²/2εA. At distance d₁ = d, U = U₀,
U₀ = dQ²/2εA,
When d₂ = 2d, U₁ = d₂Q²/2εA = 2dQ²/2εA = 2U₀
Answer:
1. The compound should be dissolved at the solvent boiling point.
2. It should be better none of the compound dissolve while at room
temperature.
3. The compound must have lower boiling point (low boiling point) than
melting point in hot solvent so to avoid it melts.
4. The compound have different solubility and impurity.
Explanation:
in order a compound to have a good crystallization, these are the primary consideration that should be followed.
1. The compound should be dissolved at the solvent boiling point.
2. It should be better none of the compound dissolve while at room
temperature.
3. The compound must have lower boiling point (low boiling point) than
melting point in hot solvent so to avoid it melts.
4. The compound have different solubility and impurity.
Answer:
La velocidad del haz de electrones es 1.78x10⁵ m/s. Este valor se obtuvo asumiendo que el campo magnético dado (3500007) estaba en tesla y que la fuerza venía dada en nN.
Explanation:
Podemos encontrar la velocidad del haz de electrones usando la Ley de Lorentz:
(1)
En donde:
F: es la fuerza magnética = 100 nN
q: es el módulo de la carga del electron = 1.6x10⁻¹⁹ C
v: es la velocidad del haz de electrones =?
B: es el campo magnético = 3500007 T
θ: es el ángulo entre el vector velocidad y el campo magnético = 90°
Introduciendo los valores en la ecuación (1) y resolviendo para "v" tenemos:
Este valor se calculó asumiendo que el campo magnético está dado en tesla (no tiene unidades en el enunciado). De igual manera se asumió que la fuerza indicada viene dada en nN.
Entonces, la velocidad del haz de electrones es 1.78x10⁵ m/s.
Espero que te sea de utilidad!
C real,inverted and smaller than the object