Answer:
The specific heat capacity can be defined as the amount of heat required to raise the temperature of 1 unit of mass by 1 unit temperature. The specific heat capacity of water is 4.186 joule/gram °C which is higher than common substances. The land has lower specific heat capacity. Thus, the land gets hot quickly than water.
This results in warming up air near the land which creates a difference in pressure across the coastal region. Sea breeze blows from sea towards landmass. Opposite happens at night, when water is still warm and land gets cooled down quickly. Then land breeze blows from landmass towards the sea. This breeze maintains a moderate temperature and windy and humid weather in the coastal regions.
Answer:
36km
Explanation:
Im pretty sure displacment is the start and finish in a straight line
Answer:

Explanation:
<u>Capacitance</u>
A two parallel-plate capacitor has a capacitance of

where

A = area of the plates = 
d = separation of the plates

We need to compute C. We'll use the circuit parameters for that. The reactance of a capacitor is given by

where w is the angular frequency

Solving for C

The reactance can be found knowing the total impedance of the circuit:

Where R is the resistance,
. Solving for Xc

The magnitude of the impedance is computed as the ratio of the rms voltage and rms current

The rms current is the peak current Ip divided by
, thus


Now collect formulas

Or, equivalently



The capacitance is now

The radius of the plates is

The separation between the plates is



Answer:
7. They arethe meter (m), the kilogram (kg), the second (s), the kelvin (K), the ampere (A), the mole (mol), and the candela (cd)
Explanation:
7. They arethe meter (m), the kilogram (kg), the second (s), the kelvin (K), the ampere (A), the mole (mol), and the candela (cd)
Answer:
The intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².
Explanation:
Given;
intensity of the sound level, dB = 60 dB
The intensity of the sound in W/m² is calculated as;
![dB = 10 Log[\frac{I}{I_o} ]\\\\](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C)
where;
I₀ is threshold of hearing = 1 x 10⁻¹² W/m²
I is intensity of the sound in W/m²
Substitute the given values and for I;
![dB = 10 Log[\frac{I}{I_o} ]\\\\60 = 10 Log[\frac{I}{I_o} ]\\\\6 = Log[\frac{I}{I_o} ]\\\\10^6 = \frac{I}{I_o} \\\\I = 10^6 \ \times \ I_o\\\\I = 10^6 \ \times \ 1^{-12} \ W/m^2 \\\\I = 1\ \times \ 10^{-6} \ W/m^2](https://tex.z-dn.net/?f=dB%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C60%20%3D%2010%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C6%20%3D%20%20Log%5B%5Cfrac%7BI%7D%7BI_o%7D%20%5D%5C%5C%5C%5C10%5E6%20%3D%20%5Cfrac%7BI%7D%7BI_o%7D%20%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%20I_o%5C%5C%5C%5CI%20%3D%2010%5E6%20%5C%20%5Ctimes%20%5C%201%5E%7B-12%7D%20%5C%20W%2Fm%5E2%20%5C%5C%5C%5CI%20%3D%201%5C%20%5Ctimes%20%5C%2010%5E%7B-6%7D%20%5C%20W%2Fm%5E2)
Therefore, the intensity of the sound in W/m² is 1 x 10⁻⁶ W/m².