From the calculations, the value of the acceleration due to gravity is 0.38 m/s^2.
<h3>What is weight?</h3>
The weight of an object is obtained as the product of the mass of the body and the acceleration due to gravity.
Thus;
When;
mass = 120 kg
weight = 46 N
acceleration due to gravity = 46 N/120 kg
=0.38 m/s^2
Learn more about acceleration due to gravity :brainly.com/question/13860566
#SPJ1
Answer: option A. strong nuclear force.
Explanation:
The diagram shows the subatomic particles inside the nucelous: protons and neutrons.
As you know, the protons are positively charged partilces inside the nucleous.
Being those particles charged with the same kind of charge they experiment electrostatic repulsion. So, how do you explain that they can stand together in such small space as it is the nucleous?
The responsible of keeping the subatomic particles together is the so called strong nuclear force.
Strong nuclear force or simply strong force is one of the four fundamental interactions or forces: i) gravitational, ii) electromagnetic, iii) weak nuclear force, and iv) strong nuclear force.
Strong nuclear force is the strongest force of nature and acts only in short distances as those inside the nucleous and is responsible for both the atraction among quarks and the atraction among protons to bind them together inside the atomic nucleous.
Answer:

Explanation:
The formula for the force exerted between two charges is

where k is the Coulomb constant.
The charges are identical, so we can write the formula as


B. Orbit. The planets orbit the sun, the moon orbits earth, etc.
The wall will push back, in exactly the opposite direction, and with
exactly the same size force.
That's why the net force on the palm of your hand is zero, and that
in turn is the reason that your hand doesn't accelerate.
If you keep increasing the strength of your push, then eventually you
exceed the force that the wall is capable of delivering. Then the wall
crumbles and falls, your hand accelerates in the direction you're pushing,
and the crowd goes wild !