1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Harrizon [31]
3 years ago
15

Jak możemy służyć innym ludziom. Pilne

Physics
1 answer:
Troyanec [42]3 years ago
7 0
Could u put it in english u can use goggle translation if u do not know how to
You might be interested in
What is the change in internal energy if 60 J of heat is released from a system and 30 J of work is done on the system? Use U =
k0ka [10]

The change in internal energy of the system is +30 J

Explanation:

We can solve this problem by using the first law of thermodynamics, which states that the change in internal energy of a system is given by the equation:

\Delta U = Q -W

where

\Delta U is the change in internal energy

Q is the heat absorbed by the system (positive if it is absorbed, negative if it is released)

W is the work done by the system (positive if it is done by the system, negative if it is done by the surroundings on the system)

Therefore, in this problem, we have

Q=-60 J (heat released by the system)

W=-30 J (work done on the system)

Therefore, the change in internal energy is

\Delta U = -60 - (-30) = +30 J

Learn more about thermodynamics:

brainly.com/question/4759369

brainly.com/question/3063912

brainly.com/question/3564634

#LearnwithBrainly

8 0
3 years ago
During the middle of a family picnic, Barry Allen received a message that his friends Bruce and Hal
weeeeeb [17]

The kinematics of the uniform motion and the addition of vectors allow finding the results are:

  • The  Barry's initial trajectory is 94.30 10³ m with n angles of θ = 138.8º
  • The return trajectory and speed are v = 785.9 m / s, with an angle of 41.2º to the South of the East

Vectors are quantities that have modulus and direction, so they must be added using vector algebra.

A simple method to perform this addition in the algebraic method which has several parts:

  • Vectors are decomposed into a coordinate system
  • The components are added
  • The resulting vector is constructed

 Indicate that Barry's velocity is constant, let's find using the uniform motion thatthe distance traveled in ad case

              v = \frac{\Delta d}{t}

              Δd = v t

Where  v is the average velocity, Δd the displacement and t the time

We look for the first distance traveled at speed v₁ = 600 m / s for a time

          t₁ = 2 min = 120 s

          Δd₁ = v₁ t₁

          Δd₁ = 600 120

          Δd₁ = 72 10³ m

Now we look for the second distance traveled for the velocity v₂ = 400 m/s    

  time t₂ = 1 min = 60 s

          Δd₂ = v₂ t₂

          Δd₂ = 400 60

          Δd₂ = 24 103 m

   

In the attached we can see a diagram of the different Barry trajectories and the coordinate system for the decomposition,

We must be careful all the angles must be measured counterclockwise from the positive side of the axis ax (East)

Let's use trigonometry for each distance

Route 1

          cos (180 -35) = \frac{x_1}{\Delta d_1}

          sin 145 = \frac{y_1}{\Delta d1}

          x₁ = Δd₁ cos 125

          y₁ = Δd₁ sin 125

          x₁ = 72 103 are 145 = -58.98 103 m

          y₁ = 72 103 sin 155 = 41.30 10³ m

Route 2

          cos (90+ 30) = \frac{x_2}{\Delta d_2}

          sin (120) = \frac{y_2}{\Delta d_2}

          x₂ = Δd₂ cos 120

          y₂ = Δd₂ sin 120

          x₂ = 24 103 cos 120 = -12 10³ m

           y₂ = 24 103 sin 120 = 20,78 10³ m

             

The component of the resultant vector are

              Rₓ = x₁ + x₂

              R_y = y₁ + y₂

              Rx = - (58.98 + 12) 10³ = -70.98 10³ m

              Ry = (41.30 + 20.78) 10³ m = 62.08 10³ m

We construct the resulting vector

Let's use the Pythagoras' Theorem for the module

             R = \sqrt{R_x^2 +R_y^2}

             R = \sqrt{70.98^2 + 62.08^2}   10³

             R = 94.30 10³ m

We use trigonometry for the angle

             tan θ ’= \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{R_y}{R_x}

             θ '= tan⁻¹ \frac{62.08}{70.98}

             θ ’= 41.2º

Since the offset in the x axis is negative and the displacement in the y axis is positive, this vector is in the second quadrant, to be written with respect to the positive side of the x axis in a counterclockwise direction

            θ = 180 - θ'

            θ = 180 -41.2

            θ = 138.8º

Finally, let's calculate the speed for the way back, since the total of the trajectory must be 5 min and on the outward trip I spend 3 min, for the return there is a time of t₃ = 2 min = 120 s.

The average speed of the trip should be

             v = \frac{\Delta R}{t_3}  

             v = \frac{94.30}{120}  \ 10^3

              v = 785.9 m / s

in the opposite direction, that is, the angle must be

               41.2º to the South of the East

In conclusion, using the kinematics of the uniform motion and the addition of vectors, results are:

  • To find the initial Barry trajectory is 94.30 10³ m with n angles of  138.8º
  • The return trajectory and speed is v = 785.9 m / s, with an angle of 41.2º to the South of the East

Learn more here:  brainly.com/question/15074838

4 0
3 years ago
Joe first focuses his attention (and his eyes) on the tree. The focal length of the cornea-lens system in his eye must be ______
kotykmax [81]

Answer: The focal length of the cornea-lens system in his eye must be LESS THAN the distance between the front and back of his eye.

Explanation:

The human eye the front part of the eye is the CORNEA. This is the tough white transparent part of the eye that helps in the refraction of light rays. While the backside of the eye is the RETINA. This is the part of the eye when images are focused.

When a normal eye is at rest, parallel rays from a distant object are focused on the retina. The ability of the eye - lens to focus points at different distances on the retina is known as accomodation. The adjustment of the eye lens to focus objects of varying distances is brought about by the ciliary muscles. The have the ability to change the shape of the eye which leads to change in focal length.

When a person with normal vision looks at a distant object at infinity, the lens brings parallel rays to focus on the retina. Thus, the furthest point which the eye can see distinctly is called the far point of the eye and it's infinity for a normal eye. But Joe was able to focus his eye on the tree, meaning that the tree was within his near point. This is the nearest point at which an object is clearly seen. Therefore, when the effective focal length of the cornea-lens system changes, it changes the location of the image of any object in one's field of view.

5 0
3 years ago
if you use the compound pulley, you will need to pull twice the distance but with less force. the force you need is equal to one
algol13

Answer:

F= 25/2 = 12.5N

Explanation:

When you use a compound pulley the force required depends on the mechanical advantage of the compound pulley. This is known as rate of loss of distance or the ratio of the force to the load.

M.A = Effort distance /Load distance. OR M.A = Load/Effort

6 0
3 years ago
An iron railroad rail is 700 ft long when the temperature is 30°C. What is its length when the temperature is – 10°C?
MAVERICK [17]

Answer:

699.67ft

Explanation:

We are given with,

  • α = 1.2×10⁻⁵ / °C
  • L₀ = 700 ft
  • ΔT = -10°C − 30°C = -40°C

Now, We have to find ΔL:

  • ΔL = (1.2×10⁻⁵ / °C) (700 ft) (-40°C)
  • ΔL = −0.336

Rounded to two significant figures, the change in length is −0.33ft.

<u>Therefore, the final length is approximately 700 ft − 0.33 ft = 699.67ft</u>.

6 0
3 years ago
Other questions:
  • The atmosphere is composed of five?
    15·2 answers
  • Exit
    11·1 answer
  • What is an important difference between medieval muslim and christian art?
    15·1 answer
  • PLEASE HELP Which landforms can be associated with the three types of plate boundaries?
    7·1 answer
  • The small intestine _____.
    6·2 answers
  • Which of these statements is true about endothermic reactions, but not about exothermic reactions?
    10·2 answers
  • The small ball of mass m = 0.5 kg is attached to point A via string and is moving at constant speed in a horizontal circle of ra
    7·1 answer
  • Why are ceiling of concert hall and conference halls made curved?
    8·1 answer
  • Which is an example of scientific evidence that can be used to critique a new scientific argument?
    15·1 answer
  • If the mass of the object is doubled and the speed is halved then kinetic energy will change by a factor of:
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!