Answer:
b is the answer
Explanation:
because i did this before
<span>373.2 km
The formula for velocity at any point within an orbit is
v = sqrt(mu(2/r - 1/a))
where
v = velocity
mu = standard gravitational parameter (GM)
r = radius satellite currently at
a = semi-major axis
Since the orbit is assumed to be circular, the equation is simplified to
v = sqrt(mu/r)
The value of mu for earth is
3.986004419 Ă— 10^14 m^3/s^2
Now we need to figure out how many seconds one orbit of the space station takes. So
86400 / 15.65 = 5520.767 seconds
And the distance the space station travels is 2 pi r, and since velocity is distance divided by time, we get the following as the station's velocity
2 pi r / 5520.767
Finally, combining all that gets us the following equality
v = 2 pi r / 5520.767
v = sqrt(mu/r)
mu = 3.986004419 Ă— 10^14 m^3/s^2
2 pi r / 5520.767 s = sqrt(3.986004419 * 10^14 m^3/s^2 / r)
Square both sides
1.29527 * 10^-6 r^2 s^2 = 3.986004419 * 10^14 m^3/s^2 / r
Multiply both sides by r
1.29527 * 10^-6 r^3 s^2 = 3.986004419 * 10^14 m^3/s^2
Divide both sides by 1.29527 * 10^-6 s^2
r^3 = 3.0773498781296 * 10^20 m^3
Take the cube root of both sides
r = 6751375.945 m
Since we actually want how far from the surface of the earth the space station is, we now subtract the radius of the earth from the radius of the orbit. For this problem, I'll be using the equatorial radius. So
6751375.945 m - 6378137.0 m = 373238.945 m
Converting to kilometers and rounding to 4 significant figures gives
373.2 km</span>
<span>Water in the oceans may become fresh water available to humans through the processes of evaporation, condensation and precipitation.
In these processes, water is heated to a very high temperature until it evaporates in order to kill the germs and remove the salts which remains after water evaporation. The next step in condensing the water vapor (which is now fresh) and precipitating this vapor to be used by humans.</span>
Answer:
3120J
Explanation:
Given parameters:
C = Specific heat capacity = 0.8J/g°C
Initial temperature = 20°C
Mass given = 5g
Final temperature = 800°C
Unknown:
Energy given to the mass = ?
Solution:
To find the energy given to the mass, let us simply use the expression below:
H = m c ΔT
H is the unknown, the energy supplied
m is the mass of the substance
c is the specific heat capacity
ΔT is the change in temperature
Input the variables;
H = 5 x 0.8 x (800 - 20) = 3120J
C. thalamus
All sensory information coming into the brain from the body must first pass thru the thalamus