Electromagnets can be turned off, this makes it easier to release things from the magnetic field.
Hope this helps :)
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.
Hello,
I believe they are a lever and a wedge.
I hope this helps!
Answer:
The ecosystem that he should consider is the tropical rain forest ecosystem.
Explanation:
In that area, there are uncountable amounts of various plants and animals that have not all yet been discovered and who all live together to build the biome. This biome is indeed the most diverse one even at this point without the knowledge of all possible life forms.
<h2>Answer:</h2>
0
<h2>Explanation:</h2>
Since the current carrying wire is placed along the axis of the cylinder, according to the right hand rule, the magnetic field will be tangent to the surface of the cylinder. Therefore, there is no magnetic field through the cylinder.
Remember that the magnetic flux through a given area is the total magnetic field passing through that area. Since there is not magnetic field through the cylinder, the total magnetic flux is therefore zero (0).