Answer:
2
Explanation:
There are some basic laws that guide the combination of elements chemically. These are the law of conservation of mass, law of definite proportion, law of multiple proportion and the law of reciprocal proportion.
For this question, the useful law to use is the law of definite proportion. Here, it is stated that no matter the method of preparation or source of preparation, the elements of a chemical compound are always present in a fixed ratio.
What this means that at any point in time, the compound titanium dioxide contains one atom of titanium and two atoms of oxygen. This means that both atoms are present at all times in a proportion of 1 to 2 .
A combustion reaction is a reaction that reacts in the presence of oxygen molecules. Methane will release -3115 kJ/mol of heat.
<h3>What is a combustion reaction?</h3>
A combustion reaction includes the reaction between the chemical reactant and oxygen molecule to produce the product. The combustion reaction between methane and oxygen is given as:
CH₄(g) + 2O₂ (g) → CO₂(g) + 2H₂O (l), ΔH = -890 kJ/mol
The stoichiometry coefficient from the reaction gives 1 mole of methane releases -890 kJ/mol enthalpy.
So, 3.5 moles methane will release = 3.5 × -890 = -3115 kJ/mol
Therefore, -3115 kJ/mol of heat is released.
Learn more about combustion reaction here:
brainly.com/question/27823881
#SPJ1
Answer: definite proportions.
Explanation:
1) The definite proportions law states that compounds will always have the same kind of atoms (elements) in the same mass proportion (ratios).
2) For example, a molecule of water will alwys have the same mass ratio of hydrogen atoms to oxygen atoms. That is what permits to obtain the chemical formula of the water molecule as H₂O.
The mass of the two hydrogen atoms will be in a fixed ratio respect to the mass of the oxygen atoms.
Then, if you have one reactant in less proportion than the other, respect to the ratio stated by the chemical formula of water, the former will react completely (it is the limiting reactant) with the corresponding (proportional) mass of the later. Then there will be an excess of the later reactant which will not react (will remain unchanged).
The reactants can only react in the proportion defined by the chemical formulas of the final products.
Answer:
87.78 in cubed
Explanation:
excuse me if I am wrong i tried my best
don't know if its right