1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marshall27 [118]
2 years ago
11

A properly fitted wearable pfd should have which characteristics

Engineering
1 answer:
Diano4ka-milaya [45]2 years ago
8 0

Answer:a composit

Explanation:

it is literally called it

You might be interested in
How to design a solar panel<br>​
artcher [175]

Answer:

#1) Find out how much power you need

#2 Calculate the amount of batteries you need.

#3 Calculate the number of solar panels needed for your location and time of year.

#4 Select a solar charge controller.

#5 Select an inverter.

#6 Balance of system

Explanation: To design solar panel, consider the following steps

1.) Find the power consumption demands

The first step in designing a solar PV system is to find out the total power and energy consumption of all loads that need to be supplied by the solar PV system as follows:

Calculate total Watt-hours per day for each appliance used.

 Add the Watt-hours needed for all appliances together to get the total Watt-hours per day which must be delivered to the appliances.

Calculate total Watt-hours per day needed from the PV modules.

Multiply the total appliances Watt-hours per day times 1.3 (the energy lost in the system) to get the total Watt-hours per day which must be provided by the panels.

2. Size the PV modules

Different size of PV modules will produce different amount of power. To find out the sizing of PV module, the total peak watt produced needs. The peak watt (Wp) produced depends on size of the PV module and climate of site location. We have to consider panel generation factor which is different in each site location. For Thailand, the panel generation factor is 3.43. To determine the sizing of PV modules, calculate as follows:

2.1 Calculate the total Watt-peak rating needed for PV modules

Divide the total Watt-hours per day needed from the PV modules (from item 1.2) by 3.43 to get the total Watt-peak rating needed for the PV panels needed to operate the appliances.

Calculate the number of PV panels for the system

Divide the answer obtained in item 2.1 by the rated output Watt-peak of the PV modules available to you. Increase any fractional part of result to the next highest full number and that will be the 

number of PV modules required.

Result of the calculation is the minimum number of PV panels. If more PV modules are installed, the system will perform better and battery life will be improved. If fewer PV modules are used, the system may not work at all during cloudy periods and battery life will be shortened.

3. Inverter sizing

An inverter is used in the system where AC power output is needed. The input rating of the inverter should never be lower than the total watt of appliances. The inverter must have the same nominal voltage as your battery.

For stand-alone systems, the inverter must be large enough to handle the total amount of Watts you will be using at one time. The inverter size should be 25-30% bigger than total Watts of appliances. In case of appliance type is motor or compressor then inverter size should be minimum 3 times the capacity of those appliances and must be added to the inverter capacity to handle surge current during starting.

For grid tie systems or grid connected systems, the input rating of the inverter should be same as PV array rating to allow for safe and efficient operation.

4. Battery sizing

The battery type recommended for using in solar PV system is deep cycle battery. Deep cycle battery is specifically designed for to be discharged to low energy level and rapid recharged or cycle charged and discharged day after day for years. The battery should be large enough to store sufficient energy to operate the appliances at night and cloudy days. To find out the size of battery, calculate as follows:

     4.1 Calculate total Watt-hours per day used by appliances.

     4.2 Divide the total Watt-hours per day used by 0.85 for battery loss.

     4.3 Divide the answer obtained in item 4.2 by 0.6 for depth of discharge.

     4.4 Divide the answer obtained in item 4.3 by the nominal battery voltage.

     4.5 Multiply the answer obtained in item 4.4 with days of autonomy (the number of days that you need the system to operate when there is no power produced by PV panels) to get the required Ampere-hour capacity of deep-cycle battery.

Battery Capacity (Ah) = Total Watt-hours per day used by appliancesx Days of autonomy

(0.85 x 0.6 x nominal battery voltage)

5. Solar charge controller sizing

The solar charge controller is typically rated against Amperage and Voltage capacities. Select the solar charge controller to match the voltage of PV array and batteries and then identify which type of solar charge controller is right for your application. Make sure that solar charge controller has enough capacity to handle the current from PV array.

For the series charge controller type, the sizing of controller depends on the total PV input current which is delivered to the controller and also depends on PV panel configuration (series or parallel configuration).

According to standard practice, the sizing of solar charge controller is to take the short circuit current (Isc) of the PV array, and multiply it by 1.3

Solar charge controller rating = Total short circuit current of PV array x 1.3

5 0
3 years ago
Ultimate tensile strength is: (a) The stress at 0.2% strain (b) The stress at the onset of plastic deformation (c) The stress at
MissTica

Answer:

By definition the ultimate tensile strength is the maximum stress in the stress-strain deformation. The stress at 0.2% strain, the stress at the onset of plastic deformation, the stress at the end of the elastic deformation and the stress at the fracture correspond, by definition, to other points of the stress-strain curve.

Explanation:

4 0
3 years ago
The properties of the air in the inlet section with A1 = 0.25ab m2 in a converging-diverging channel are given as U1 = 25a,b m/s
NeX [460]

Answer:

nice cake

Explanation:

3 0
3 years ago
Why do we need an architect?explain briefly by focusing on its various sectors.
lara [203]

Answer:

An architect will help you determine exactly what you need and come up with inventive ideas to solve even the most complex design problems. Think of us as professional 3D problem solvers! An architect can and should lift your project out of the ordinary.

Explanation:

What are the 3 main functions of an architect?

Design: Architects must design, plan, and develop concepts to create construction plans and technical documents. These are based on client requirements and ideas. Research: Architects must learn about the different building codes, safety regulations, construction innovations and city laws that affect their designs

What are the 7 types of architecture?

There are several main types of architects who focus on different types of structures and designs.

...

Commercial Architects

Office buildings / skyscrapers.

Hotels.

Bridges.

Schools.

Museums.

Government buildings.

Multi-unit residential buildings.

Pretty much any type of building that's not a residential home.

8 0
2 years ago
A circular hoop sits in a stream of water, oriented perpendicular to the current. If the area of the hoop is doubled, the flux (
natka813 [3]

Answer:

The flux (volume of water per unit time) through the hoop will also double.

Explanation:

The flux = volume of water per unit time = flow rate of water through the hoop.

The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.

This means that

Flow rate = AV

where A is the area of the hoop

V is the velocity of the water through the hoop

This flow rate = volume of water per unit time = Δv/Δt =Q

From all the above statements, we can say

Q = AV

From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2

3 0
3 years ago
Other questions:
  • As of January 1, 2018, Farley Co. had a credit balance of $534,000 in its allowance for uncollectible accounts. Based on experie
    10·1 answer
  • When watching your weight, you want to snack smart. To do that, you want a snack that is going to __________.
    13·1 answer
  • When choosing a respirator for your job, you must conduct a _____ test.
    15·1 answer
  • The car travels around the portion of a circular track having a radius of r = 500 ft such that when it is at point A it has a ve
    14·1 answer
  • Technician A says that proper footwear may include both leather and steel-toed shoes. Technician B says that leather-soled shoes
    8·1 answer
  • Suppose there are 76 packets entering a queue at the same time. Each packet is of size 5 MiB. The link transmission rate is 2.1
    5·1 answer
  • Pls help! 39 points!!
    5·2 answers
  • 1) What output force (Fout) is produced if the lever arm length (rout) is 100 mm?
    13·2 answers
  • What are the major types of stone used in construction? How do their properties differ? What sequence of operations would be use
    10·1 answer
  • Explain the concept of energy conversion as applied to the generation of electricity also known as electrical energy​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!